1,712 research outputs found

    Decomposition Strategies for Constructive Preference Elicitation

    Full text link
    We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.Comment: Accepted at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    Constructive Preference Elicitation over Hybrid Combinatorial Spaces

    Full text link
    Preference elicitation is the task of suggesting a highly preferred configuration to a decision maker. The preferences are typically learned by querying the user for choice feedback over pairs or sets of objects. In its constructive variant, new objects are synthesized "from scratch" by maximizing an estimate of the user utility over a combinatorial (possibly infinite) space of candidates. In the constructive setting, most existing elicitation techniques fail because they rely on exhaustive enumeration of the candidates. A previous solution explicitly designed for constructive tasks comes with no formal performance guarantees, and can be very expensive in (or unapplicable to) problems with non-Boolean attributes. We propose the Choice Perceptron, a Perceptron-like algorithm for learning user preferences from set-wise choice feedback over constructive domains and hybrid Boolean-numeric feature spaces. We provide a theoretical analysis on the attained regret that holds for a large class of query selection strategies, and devise a heuristic strategy that aims at optimizing the regret in practice. Finally, we demonstrate its effectiveness by empirical evaluation against existing competitors on constructive scenarios of increasing complexity.Comment: AAAI 2018, computing methodologies, machine learning, learning paradigms, supervised learning, structured output

    RIGA: A Regret-Based Interactive Genetic Algorithm

    Full text link
    In this paper, we propose an interactive genetic algorithm for solving multi-objective combinatorial optimization problems under preference imprecision. More precisely, we consider problems where the decision maker's preferences over solutions can be represented by a parameterized aggregation function (e.g., a weighted sum, an OWA operator, a Choquet integral), and we assume that the parameters are initially not known by the recommendation system. In order to quickly make a good recommendation, we combine elicitation and search in the following way: 1) we use regret-based elicitation techniques to reduce the parameter space in a efficient way, 2) genetic operators are applied on parameter instances (instead of solutions) to better explore the parameter space, and 3) we generate promising solutions (population) using existing solving methods designed for the problem with known preferences. Our algorithm, called RIGA, can be applied to any multi-objective combinatorial optimization problem provided that the aggregation function is linear in its parameters and that a (near-)optimal solution can be efficiently determined for the problem with known preferences. We also study its theoretical performances: RIGA can be implemented in such way that it runs in polynomial time while asking no more than a polynomial number of queries. The method is tested on the multi-objective knapsack and traveling salesman problems. For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms
    • …
    corecore