19,957 research outputs found

    Trustee: A Trust Management System for Fog-enabled Cyber Physical Systems

    Get PDF
    In this paper, we propose a lightweight trust management system (TMS) for fog-enabled cyber physical systems (Fog-CPS). Trust computation is based on multi-factor and multi-dimensional parameters, and formulated as a statistical regression problem which is solved by employing random forest regression model. Additionally, as the Fog-CPS systems could be deployed in open and unprotected environments, the CPS devices and fog nodes are vulnerable to numerous attacks namely, collusion, self-promotion, badmouthing, ballot-stuffing, and opportunistic service. The compromised entities can impact the accuracy of trust computation model by increasing/decreasing the trust of other nodes. These challenges are addressed by designing a generic trust credibility model which can countermeasures the compromise of both CPS devices and fog nodes. The credibility of each newly computed trust value is evaluated and subsequently adjusted by correlating it with a standard deviation threshold. The standard deviation is quantified by computing the trust in two configurations of hostile environments and subsequently comparing it with the trust value in a legitimate/normal environment. Our results demonstrate that credibility model successfully countermeasures the malicious behaviour of all Fog-CPS entities i.e. CPS devices and fog nodes. The multi-factor trust assessment and credibility evaluation enable accurate and precise trust computation and guarantee a dependable Fog-CPS system

    TRULLO - local trust bootstrapping for ubiquitous devices

    Get PDF
    Handheld devices have become sufficiently powerful that it is easy to create, disseminate, and access digital content (e.g., photos, videos) using them. The volume of such content is growing rapidly and, from the perspective of each user, selecting relevant content is key. To this end, each user may run a trust model - a software agent that keeps track of who disseminates content that its user finds relevant. This agent does so by assigning an initial trust value to each producer for a specific category (context); then, whenever it receives new content, the agent rates the content and accordingly updates its trust value for the producer in the content category. However, a problem with such an approach is that, as the number of content categories increases, so does the number of trust values to be initially set. This paper focuses on how to effectively set initial trust values. The most sophisticated of the current solutions employ predefined context ontologies, using which initial trust in a given context is set based on that already held in similar contexts. However, universally accepted (and time invariant) ontologies are rarely found in practice. For this reason, we propose a mechanism called TRULLO (TRUst bootstrapping by Latently Lifting cOntext) that assigns initial trust values based only on local information (on the ratings of its user’s past experiences) and that, as such, does not rely on third-party recommendations. We evaluate the effectiveness of TRULLO by simulating its use in an informal antique market setting. We also evaluate the computational cost of a J2ME implementation of TRULLO on a mobile phone

    Data centric trust evaluation and prediction framework for IOT

    Get PDF
    © 2017 ITU. Application of trust principals in internet of things (IoT) has allowed to provide more trustworthy services among the corresponding stakeholders. The most common method of assessing trust in IoT applications is to estimate trust level of the end entities (entity-centric) relative to the trustor. In these systems, trust level of the data is assumed to be the same as the trust level of the data source. However, most of the IoT based systems are data centric and operate in dynamic environments, which need immediate actions without waiting for a trust report from end entities. We address this challenge by extending our previous proposals on trust establishment for entities based on their reputation, experience and knowledge, to trust estimation of data items [1-3]. First, we present a hybrid trust framework for evaluating both data trust and entity trust, which will be enhanced as a standardization for future data driven society. The modules including data trust metric extraction, data trust aggregation, evaluation and prediction are elaborated inside the proposed framework. Finally, a possible design model is described to implement the proposed ideas

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Implementation of a Regression-based Trust Model in a Wireless Ad hoc Testbed

    Get PDF
    Wireless ad hoc networks are resource constraint and vulnerable to various security attacks. Trust based security modelling go hand in hand with cryptographic services to offer good security services. We have implemented a vector auto regression (VAR) based trust model over ad hoc on demand distance vector protocol and optimised link state routing protocol. The novelty in this model lies in  capturing individual functional behaviours of a neighbour in an ad hoc network and modeling them as regression parameters. The experimental results show the feasibility of implementing trust models over real ad hoc network deployments. The simulations results show that the proposed VAR trust model offers better performance compared to the existing trust models.Defence Science Journal, 2012, 62(1), pp.167-173, DOI:http://dx.doi.org/10.14429/dsj.62.143
    corecore