5,587 research outputs found

    Occlusion Coherence: Detecting and Localizing Occluded Faces

    Full text link
    The presence of occluders significantly impacts object recognition accuracy. However, occlusion is typically treated as an unstructured source of noise and explicit models for occluders have lagged behind those for object appearance and shape. In this paper we describe a hierarchical deformable part model for face detection and landmark localization that explicitly models part occlusion. The proposed model structure makes it possible to augment positive training data with large numbers of synthetically occluded instances. This allows us to easily incorporate the statistics of occlusion patterns in a discriminatively trained model. We test the model on several benchmarks for landmark localization and detection including challenging new data sets featuring significant occlusion. We find that the addition of an explicit occlusion model yields a detection system that outperforms existing approaches for occluded instances while maintaining competitive accuracy in detection and landmark localization for unoccluded instances

    Automating image analysis by annotating landmarks with deep neural networks

    Full text link
    Image and video analysis is often a crucial step in the study of animal behavior and kinematics. Often these analyses require that the position of one or more animal landmarks are annotated (marked) in numerous images. The process of annotating landmarks can require a significant amount of time and tedious labor, which motivates the need for algorithms that can automatically annotate landmarks. In the community of scientists that use image and video analysis to study the 3D flight of animals, there has been a trend of developing more automated approaches for annotating landmarks, yet they fall short of being generally applicable. Inspired by the success of Deep Neural Networks (DNNs) on many problems in the field of computer vision, we investigate how suitable DNNs are for accurate and automatic annotation of landmarks in video datasets representative of those collected by scientists studying animals. Our work shows, through extensive experimentation on videos of hawkmoths, that DNNs are suitable for automatic and accurate landmark localization. In particular, we show that one of our proposed DNNs is more accurate than the current best algorithm for automatic localization of landmarks on hawkmoth videos. Moreover, we demonstrate how these annotations can be used to quantitatively analyze the 3D flight of a hawkmoth. To facilitate the use of DNNs by scientists from many different fields, we provide a self contained explanation of what DNNs are, how they work, and how to apply them to other datasets using the freely available library Caffe and supplemental code that we provide.https://arxiv.org/abs/1702.00583Published versio

    The analysis of facial beauty: an emerging area of research in pattern analysis

    Get PDF
    Much research presented recently supports the idea that the human perception of attractiveness is data-driven and largely irrespective of the perceiver. This suggests using pattern analysis techniques for beauty analysis. Several scientific papers on this subject are appearing in image processing, computer vision and pattern analysis contexts, or use techniques of these areas. In this paper, we will survey the recent studies on automatic analysis of facial beauty, and discuss research lines and practical application

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Making sense of real-world scenes

    Get PDF
    To interact with the world, we have to make sense of the continuous sensory input conveying information about our environment. A recent surge of studies has investigated the processes enabling scene understanding, using increasingly complex stimuli and sophisticated analyses to highlight the visual features and brain regions involved. However, there are two major challenges to producing a comprehensive framework for scene understanding. First, scene perception is highly dynamic, subserving multiple behavioral goals. Second, a multitude of different visual properties co-occur across scenes and may be correlated or independent. We synthesize the recent literature and argue that for a complete view of scene understanding, it is necessary to account for both differing observer goals and the contribution of diverse scene properties
    • …
    corecore