9,866 research outputs found

    Bayesian Linear Regression

    Get PDF
    The paper is concerned with Bayesian analysis under prior-data conflict, i.e. the situation when observed data are rather unexpected under the prior (and the sample size is not large enough to eliminate the influence of the prior). Two approaches for Bayesian linear regression modeling based on conjugate priors are considered in detail, namely the standard approach also described in Fahrmeir, Kneib & Lang (2007) and an alternative adoption of the general construction procedure for exponential family sampling models. We recognize that - in contrast to some standard i.i.d. models like the scaled normal model and the Beta-Binomial / Dirichlet-Multinomial model, where prior-data conflict is completely ignored - the models may show some reaction to prior-data conflict, however in a rather unspecific way. Finally we briefly sketch the extension to a corresponding imprecise probability model, where, by considering sets of prior distributions instead of a single prior, prior-data conflict can be handled in a very appealing and intuitive way

    Fuzzy sets in nonparametric Bayes regression

    Full text link
    A simple Bayesian approach to nonparametric regression is described using fuzzy sets and membership functions. Membership functions are interpreted as likelihood functions for the unknown regression function, so that with the help of a reference prior they can be transformed to prior density functions. The unknown regression function is decomposed into wavelets and a hierarchical Bayesian approach is employed for making inferences on the resulting wavelet coefficients.Comment: Published in at http://dx.doi.org/10.1214/074921708000000084 the IMS Collections (http://www.imstat.org/publications/imscollections.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Logistic regression on Markov chains for crop rotation modelling.

    Get PDF
    Often, in dynamical systems, such as farmer's crop choices, the dynamics is driven by external non-stationary factors, such as rainfall, temperature, and economy. Such dynamics can be modelled by a non-stationary Markov chain, where the transition probabilities are logistic functions of such external factors. We investigate the problem of estimating the parameters of the logistic model from data, using conjugate analysis with a fairly broad class of priors, to accommodate scarcity of data and lack of strong prior expert opinions. We show how maximum likelihood methods can be used to get bounds on the posterior mode of the parameters

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B
    corecore