153 research outputs found

    MoWLD: a robust motion image descriptor for violence detection

    Full text link
    © 2015, Springer Science+Business Media New York. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in designing an algorithm that can detect violence in surveillance videos with high performance. Existing methods typically apply the Bag-of-Words (BoW) model on local spatiotemporal descriptors. However, traditional spatiotemporal features are not discriminative enough, and also the BoW model roughly assigns each feature vector to only one visual word and therefore ignores the spatial relationships among the features. To tackle these problems, in this paper we propose a novel Motion Weber Local Descriptor (MoWLD) in the spirit of the well-known WLD and make it a powerful and robust descriptor for motion images. We extend the WLD spatial descriptions by adding a temporal component to the appearance descriptor, which implicitly captures local motion information as well as low-level image appear information. To eliminate redundant and irrelevant features, the non-parametric Kernel Density Estimation (KDE) is employed on the MoWLD descriptor. In order to obtain more discriminative features, we adopt the sparse coding and max pooling scheme to further process the selected MoWLDs. Experimental results on three benchmark datasets have demonstrated the superiority of the proposed approach over the state-of-the-arts

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    Reconhecimento de ações em vídeos baseado na fusão de representações de ritmos visuais

    Get PDF
    Orientadores: Hélio Pedrini, David Menotti GomesTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Avanços nas tecnologias de captura e armazenamento de vídeos têm promovido uma grande demanda pelo reconhecimento automático de ações. O uso de câmeras para propó- sitos de segurança e vigilância tem aplicações em vários cenários, tais coomo aeroportos, parques, bancos, estações, estradas, hospitais, supermercados, indústrias, estádios, escolas. Uma dificuldade inerente ao problema é a complexidade da cena sob condições habituais de gravação, podendo conter fundo complexo e com movimento, múltiplas pes- soas na cena, interações com outros atores ou objetos e movimentos de câmera. Bases de dados mais recentes são construídas principalmente com gravações compartilhadas no YouTube e com trechos de filmes, situações em que não se restringem esses obstáculos. Outra dificuldade é o impacto da dimensão temporal, pois ela infla o tamanho dos da- dos, aumentando o custo computacional e o espaço de armazenamento. Neste trabalho, apresentamos uma metodologia de descrição de volumes utilizando a representação de Ritmos Visuais (VR). Esta técnica remodela o volume original do vídeo em uma imagem, em que se computam descritores bidimensionais. Investigamos diferentes estratégias para construção do ritmo visual, combinando configurações em diversos domínios de imagem e direções de varredura dos quadros. A partir disso, propomos dois métodos de extração de características originais, denominados Naïve Visual Rhythm (Naïve VR) e Visual Rhythm Trajectory Descriptor (VRTD). A primeira abordagem é a aplicação direta da técnica no volume de vídeo original, formando um descritor holístico que considera os eventos da ação como padrões e formatos na imagem de ritmo visual. A segunda variação foca na análise de pequenas vizinhanças obtidas a partir do processo das trajetórias densas, que permite que o algoritmo capture detalhes despercebidos pela descrição global. Testamos a nossa proposta em oito bases de dados públicas, sendo uma de gestos (SKIG), duas em primeira pessoa (DogCentric e JPL), e cinco em terceira pessoa (Weizmann, KTH, MuHAVi, UCF11 e HMDB51). Os resultados mostram que a técnica empregada é capaz de extrair elementos de movimento juntamente com informações de formato e de aparência, obtendo taxas de acurácia competitivas comparadas com o estado da arteAbstract: Advances in video acquisition and storage technologies have promoted a great demand for automatic recognition of actions. The use of cameras for security and surveillance purposes has applications in several scenarios, such as airports, parks, banks, stations, roads, hospitals, supermarkets, industries, stadiums, schools. An inherent difficulty of the problem is the complexity of the scene under usual recording conditions, which may contain complex background and motion, multiple people on the scene, interactions with other actors or objects, and camera motion. Most recent databases are built primarily with shared recordings on YouTube and with snippets of movies, situations where these obstacles are not restricted. Another difficulty is the impact of the temporal dimension since it expands the size of the data, increasing computational cost and storage space. In this work, we present a methodology of volume description using the Visual Rhythm (VR) representation. This technique reshapes the original volume of the video into an image, where two-dimensional descriptors are computed. We investigated different strategies for constructing the representation by combining configurations in several image domains and traversing directions of the video frames. From this, we propose two feature extraction methods, Naïve Visual Rhythm (Naïve VR) and Visual Rhythm Trajectory Descriptor (VRTD). The first approach is the straightforward application of the technique in the original video volume, forming a holistic descriptor that considers action events as patterns and formats in the visual rhythm image. The second variation focuses on the analysis of small neighborhoods obtained from the process of dense trajectories, which allows the algorithm to capture details unnoticed by the global description. We tested our methods in eight public databases, one of hand gestures (SKIG), two in first person (DogCentric and JPL), and five in third person (Weizmann, KTH, MuHAVi, UCF11 and HMDB51). The results show that the developed techniques are able to extract motion elements along with format and appearance information, achieving competitive accuracy rates compared to state-of-the-art action recognition approachesDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2015/03156-7FAPES

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Discriminative Dictionary Learning with Motion Weber Local Descriptor for Violence Detection

    Full text link
    © 1991-2012 IEEE. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in developing an algorithm that can detect violence in surveillance videos with high performance. In this paper, following our recently proposed idea of motion Weber local descriptor (WLD), we make two major improvements and propose a more effective and efficient algorithm for detecting violence from motion images. First, we propose an improved WLD (IWLD) to better depict low-level image appearance information, and then extend the spatial descriptor IWLD by adding a temporal component to capture local motion information and hence form the motion IWLD. Second, we propose a modified sparse-representation-based classification model to both control the reconstruction error of coding coefficients and minimize the classification error. Based on the proposed sparse model, a class-specific dictionary containing dictionary atoms corresponding to the class labels is learned using class labels of training samples. With this learned dictionary, not only the representation residual but also the representation coefficients become discriminative. A classification scheme integrating the modified sparse model is developed to exploit such discriminative information. The experimental results on three benchmark data sets have demonstrated the superior performance of the proposed approach over the state of the arts

    Development of New Models for Vision-Based Human Activity Recognition

    Get PDF
    Els mètodes de reconeixement d'accions permeten als sistemes intel·ligents reconèixer accions humanes en vídeos de la vida quotidiana. No obstant, molts mètodes de reconeixement d'accions donen taxes notables d’error de classificació degut a les grans variacions dins dels vídeos de la mateixa classe i als canvis en el punt de vista, l'escala i el fons. Per reduir la classificació incorrecta , proposem un nou mètode de representació de vídeo que captura l'evolució temporal de l'acció que succeeix en el vídeo, un nou mètode per a la segmentació de mans i un nou mètode per al reconeixement d'activitats humanes en imatges fixes.Los métodos de reconocimiento de acciones permiten que los sistemas inteligentes reconozcan acciones humanas en videos de la vida cotidiana. No obstante, muchos métodos de reconocimiento de acciones dan tasas notables de error de clasificación debido a las grandes variaciones dentro de los videos de la misma clase y los cambios en el punto de vista, la escala y el fondo. Para reducir la clasificación errónea, Łproponemos un nuevo método de representación de video que captura la evolución temporal de la acción que ocurre en el video completo, un nuevo método para la segmentación de manos y un nuevo método para el reconocimiento de actividades humanas en imágenes fijas.Action recognition methods enable intelligent systems to recognize human actions in daily life videos. However, many action recognition methods give noticeable misclassification rates due to the big variations within the videos of the same class, and the changes in viewpoint, scale and background. To reduce the misclassification rate, we propose a new video representation method that captures the temporal evolution of the action happening in the whole video, a new method for human hands segmentation and a new method for human activity recognition in still images

    Feature Extraction and Recognition for Human Action Recognition

    Get PDF
    How to automatically label videos containing human motions is the task of human action recognition. Traditional human action recognition algorithms use the RGB videos as input, and it is a challenging task because of the large intra-class variations of actions, cluttered background, possible camera movement, and illumination variations. Recently, the introduction of cost-effective depth cameras provides a new possibility to address difficult issues. However, it also brings new challenges such as noisy depth maps and time alignment. In this dissertation, effective and computationally efficient feature extraction and recognition algorithms are proposed for human action recognition. At the feature extraction step, two novel spatial-temporal feature descriptors are proposed which can be combined with local feature detectors. The first proposed descriptor is the Shape and Motion Local Ternary Pattern (SMltp) descriptor which can dramatically reduced the number of features generated by dense sampling without sacrificing the accuracy. In addition, the Center-Symmetric Motion Local Ternary Pattern (CS-Mltp) descriptor is proposed, which describes the spatial and temporal gradients-like features. Both descriptors (SMltp and CS-Mltp) take advantage of the Local Binary Pattern (LBP) texture operator in terms of tolerance to illumination change, robustness in homogeneous region and computational efficiency. For better feature representation, this dissertation presents a new Dictionary Learning (DL) method to learn an overcomplete set of representative vectors (atoms) so that any input feature can be approximated by a linear combination of these atoms with minimum reconstruction error. Instead of simultaneously learning one overcomplete dictionary for all classes, we learn class-specific sub-dictionaries to increase the discrimination. In addition, the group sparsity and the geometry constraint are added to the learning process to further increase the discriminative power, so that features are well reconstructed by atoms from the same class and features from the same class with high similarity will be forced to have similar coefficients. To evaluate the proposed algorithms, three applications including single view action recognition, distributed multi-view action recognition, and RGB-D action recognition have been explored. Experimental results on benchmark datasets and comparative analyses with the state-of-the-art methods show the effectiveness and merits of the proposed algorithms

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results
    corecore