1,669 research outputs found

    Representation and application of spline-based finite elements

    Get PDF
    Isogeometric analysis, as a generalization of the finite element method, employs spline methods to achieve the same representation for both geometric modeling and analysis purpose. Being one of possible tool in application to the isogeometric analysis, blending techniques provide strict locality and smoothness between elements. Motivated by these features, this thesis is devoted to the design and implementation of this alternative type of finite elements. This thesis combines topics in geometry, computer science and engineering. The research is mainly focused on the algorithmic aspects of the usage of the spline-based finite elements in the context of developing generalized methods for solving different model problems. The ability for conversion between different representations is significant for the modeling purpose. Methods for conversion between local and global representations are presented

    Spline Based Intrusion Detection in Vehicular Ad Hoc Networks (VANET)

    Full text link
    Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation for attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are particularly difficult to protect due to the dynamic nature of their clients and their necessity for constant interaction with their respective cyber-physical systems. Currently, there is a need for a VANET-specific IDS that can satisfy these requirements. Spline function-based IDSs have shown to be effective in traditional network settings. By examining the various construction of splines and testing their robustness, the viability for a spline-based IDS can be determined

    Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation

    Get PDF
    In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications

    Knot Flow Classification and its Applications in Vehicular Ad-Hoc Networks (VANET)

    Get PDF
    Intrusion detection systems (IDSs) play a crucial role in the identification and mitigation for attacks on host systems. Of these systems, vehicular ad hoc networks (VANETs) are difficult to protect due to the dynamic nature of their clients and their necessity for constant interaction with their respective cyber-physical systems. Currently, there is a need for a VANET-specific IDS that meets this criterion. To this end, a spline-based intrusion detection system has been pioneered as a solution. By combining clustering with spline-based general linear model classification, this knot flow classification method (KFC) allows for robust intrusion detection to occur. Due its design and the manner it is constructed, KFC holds great potential for implementation across a distributed system. The purpose of this thesis was to explain and extrapolate the afore mentioned IDS, highlight its effectiveness, and discuss the conceptual design of the distributed system for use in future research

    Global approach for fitting 2D interferometric data

    Get PDF
    The present paper describes a fitting procedure capable of providing a smooth approximation of experimental data distributed on a bi-dimensional domain, e.g. the typical output of an interferometric technique. The procedure is based on the optimization of an analytical model defined on the whole domain by the B-spline formulation. In the paper rectangular, circular and polygonal convex domains are considered in details, but, according to the need of the operating conditions, the procedure can be extended to domains of different shapes. The proposed procedure was initially calibrated by an analytical case study: a thin square plate simply supported along the edges and loaded by a uniform pressure. Subsequently, by the operative parameters defined by the analyses carried out on the analytic data, the fitting procedure was applied on experimental data obtained by phase shifting speckle interferometry
    corecore