37 research outputs found

    Entwicklung eines Softwaretools zur Unterstützung von Registrierungsprozessen für medizinische Bilddaten auf Basis von MeVisLab

    Get PDF
    Das Registrieren medizinischer Bilddatensätze ist ein komplexer und zeitintensiver Prozess. Ohne die Entwicklung effizienter und schneller Registrierungsverfahren müssten erhebliche personelle Ressourcen in das manuelle Registrieren investiert oder teilweise ganz auf deren Resultate und den einhergehenden Erkenntnissen verzichtet werden. Daher ist es besonders wichtig Neuentwicklungen in diesem Gebiet voranzutreiben und Programmstrukturen zu entwickeln, die diese neuen Verfahren einbinden, evaluieren und anschließend optimieren können. Das Ziel dieser Arbeit war die Entwicklung eines Softwaretools, das Registrierungsprozesse von der Vorverarbeitung über die eigentliche Registrierung bis hin zur visuellen Evaluierung unterstützt. Dabei sollte die Applikation so entwickelt werden, dass sowohl Funktionalitäten als auch Benutzeroberfläche einfach erweitert oder modifiziert werden können. Zu Beginn der Entwicklung musste ein geeignetes Framework (bzw. Entwicklungsumgebung) gefunden werden. Dieses sollte sowohl eine stabile Umgebung als auch einen möglichst großen Funktionsumfang im Bereich des Prä- und Postprocessing der Registrierung bieten können. Zudem sollte diese Entwicklungsumgebung auch Strukturen bieten, die es ermöglichen neue Funktionalitäten einfach hinzuzufügen. Auf Grund der Ergebnisse der durchgeführten Analyse kam im Rahmen dieser Diplomarbeit MeVisLab zum Einsatz

    Robotergestützte Ultraschalltomographie

    Get PDF
    Ultraschallbildgebung ist ein in der Medizin häufig verwendetes Verfahren zur Diagnostik und Verlaufskontrolle. Ultraschall bietet vor allem eine große Weichteilauflösung bei gleichzeitig niedrigen Kosten, erfordert aber vom Anwender ein großes Maß an Erfahrung. Aufgrund vieler Artefakte und Verzerrungen in Ultraschallbildern ist die Bildqualität der Bilder deutlich geringer, als die derer, die mittels Magnetresonanztomographie erstellt werden können. Deshalb arbeiten viele verschiedene Forschungsgruppen an der Verbesserung der Modalitäten und Datensätze im Zusammenhang mit Ultraschallbildgebung. Diese Arbeit beschäftigt sich mit der Entwicklung eines robotergestützten Ultraschalltomographen. Das Gerät ist in der Lage tomographische Bildserien von Phantomen und Weichgewebe zu erstellen, die anschließend dreidimensional visualisiert werden können

    MITK-IGT für die computerassistierte Weichgewebepunktion

    Get PDF
    Im Bereich der Krebsdiagnose und -therapie gewinnen neue minimalinvasive Verfahren zunehmend an Bedeutung. Beispiele hierfür sind Nadelpunktionen, bei denen zur Diagnose eine Gewebsprobe entnommen (Biopsie) oder durch Zerstörung des Gewebes im Bereich der Nadelspitze eine Krebserkrankung therapiert wird (Ablation). Eine zentrale Herausforderung hierbei ist die genaue Platzierung der Nadel. Am deutschen Krebsforschungszentrum (DKFZ) wurde ein computergestütztes Navigationssystem für Nadelinsertionen entwickelt, das sich im in-vivo Versuch als höchst akkurat zeigte. Trotz der vielversprechenden Ergebnisse kam das System bisher jedoch nicht am Patienten zum Einsatz. Dies ist unter anderem auf die schwierige Integration des Systems in den klinischen Workflow und die erhöhte Invasivität zurückzuführen. Vor diesem Hintergrund war das Ziel dieser Arbeit zum einen die Entwicklung einer flexiblen, erweiterbare Software für die navigierte Weichgewebepunktion, zum anderen die Weiterentwicklung des Navigationssystems durch die Einbindung eines neuen Feldgenerators für das elektromagnetische Trackingsystem NDI Aurora. Die Implementierung der Software erfolgte aufbauend auf der Bibliothek MITK und dem enthaltenen Modul MITK-IGT. Dabei wurde ein komponentenweiser Aufbau umgesetzt, welcher einen einfachen Austausch oder Erweiterungen der einzelnen Komponenten ermöglicht. Des Weiteren wurde der neue Feldgenerator bezüglich Genauigkeit und Präzision in der Einsatzumgebung evaluiert und es erfolgte ein Test des Navigationssystems unter klinischen Bedingungen. Abschließend kann festgestellt werden, dass durch die gezeigte Flexibilität und Erweiterbarkeit der entwickelten Software zahlreiche Möglichkeiten zur Weiterentwicklung offen stehen. Bezüglich des Feldgenerators zeigte sich das vielversprechende Potential dieses Geräts für die Weiterentwicklung medizinischer Navigationssysteme

    Augmented Reality Visualisierung medizinischer Bilddaten auf mobilen Geräten

    Get PDF
    Augmented Reality Anwendungen können in der Medizin Eingriffe erleichtern, beispielsweise durch intraoperative Projektion von Zugangswegen oder Tumo-ren und Risikostrukturen auf den Patienten. Gründe, weshalb die Verwendung von Augmented Reality noch keinen Einzug in den Operationssaal gefunden hat, sind unter anderem eine erschwerte Tiefenwahrnehmung der virtuellen Objekte in der echten Szene und fehlende Möglichkeiten, um die Fülle der zusätzlich visualisierten Objekte zu kontrollieren. Diesen Hindernissen entgegenzutreten ist das Ziel dieser Arbeit. Weiterhin gehört eine echtzeitfähige Implementierung zu den Anforderungen dieser Arbeit, um die Visualisierung im Rahmen eines Projektes zu nutzen, welches Augmented Reality auf mobilen Geräten direkt am Patienten zeigt. Um diese Ziele zu erreichen, wurde zunächst eine Texturprojektion kombiniert mit einem selbstentwickelten Grafikkartenprogramm realisiert, um dem Betrachter die Orientierung innerhalb der Augmented Reality Szene zu erleichtern und die Berechnung der perspektivischen Projektion der Textur zugleich effizient zu halten. Um die Tiefenwahrnehmung in der Szene zu verbessern, wurde ein weiteres Grafikkartenprogramm entwickelt, welches in eine gegebene Oberfläche eine Öffnung zeichnet, durch welche der Betrachter in das Innere des Patienten blicken kann. Weiterhin wurde ein Konzept umgesetzt, mit dessen Hilfe die Anzahl an abgebildeten Objekten in der Augmented Reality Szene gesteuert werden kann. Dieses Konzept dient außerdem der Untergliederung von Objekten in verschiedene Familien, für die dann unterschiedliche Darstellungen umgesetzt werden können. Ergebnis ist sowohl eine sichtbar verbesserte Tiefenwahrnehmung als auch ein Konzept zur Kontrolle der Fülle an abgebildeten Informationen in einer echtzeitfähigen Implementierung

    Modulhandbuch Master Biomedizinische Technik: Studienordnungsversion: 2009

    Get PDF
    corecore