4,061 research outputs found

    Registration of Contrast-Enhanced Ultrasound Sequences

    Get PDF
    The registration of contrast-enhanced ultrasound (CEUS) image sequences is necessary for correct perfusion analysis. Methods developed for CEUS images have to overcome the low signal to noise ratio, speckle noise and pixel intensity changes given by the application of ultrasound contrast agents. A method presented in this paper utilizes intensity-based algorithm

    Effect of delayed acquisition times on Gadolinium-enhanced MRI of the presumably normal canine brain

    Get PDF
    A delay in imaging following intravenous contrast medium administration has been recommended to reduce misdiagnoses. However, the normal variation of contrast enhancement in dogs following a delay has not been characterized. Contrast enhanced MR imaging of 22 dogs was assessed, in terms of identification of normal anatomic structures, to investigate the variation associated with 10 minute delay between contrast medium administration and imaging. All dogs had a normal brain MR imaging study and unremarkable CSF. Specific ROIs were assessed both objectively, using computer software, and subjectively using three observers. Mean contrast enhancement greater than 10% was seen in the pituitary gland, choroid plexus, meninges, temporal muscle, trigeminal nerve and the trigeminal nerve root. Structures with an active blood-brain-barrier had minimal contrast enhancement (<6%). Enhancing structures had significantly more contrast enhancement at t=1min versus t=10min, except in temporal muscle, the trigeminal nerve and the trigeminal nerve root. Inter-observer agreement was moderate to good in favor of the initial post contrast T1w sequence. The observers found either no difference or poor agreement in identification of the non-vascular structures. Intra-observer agreement was very good with all vascular structures and most non-vascular structures. A degree of meningeal enhancement was a consistent finding. The initial acquisition had higher enhancement characteristics and observer agreement for some structures; however, contrast-to-noise was comparable in the delayed phase or not significantly different. We provide baseline references and suggest that the initial T1w post contrast sequence is preferable but not essential should a delayed post contrast T1w sequence be performed

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    Quantification of tumour heterogenity in MRI

    Get PDF
    Cancer is the leading cause of death that touches us all, either directly or indirectly. It is estimated that the number of newly diagnosed cases in the Netherlands will increase to 123,000 by the year 2020. General Dutch statistics are similar to those in the UK, i.e. over the last ten years, the age-standardised incidence rate1 has stabilised at around 355 females and 415 males per 100,000. Figure 1 shows the cancer incidence per gender. In the UK, the rise in lifetime risk of cancer is more than one in three and depends on many factors, including age, lifestyle and genetic makeup

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    Computer assisted analysis of contrast enhanced ultrasound images for quantification in vascular diseases

    Get PDF
    Contrast enhanced ultrasound (CEUS) with microbubble contrast agents has shown great potential in imaging microvasculature, quantifying perfusion and hence detecting vascular diseases. However, most existing perfusion quantification methods based on image intensity, and are susceptible to confounding factors such as attenuation artefacts. Improving reproducibility is also a key challenge to clinical translation. Therefore, this thesis aims at developing attenuation correction and quantification techniques in CEUS with applications for detection and quantification of microvascular flow / perfusion. Firstly, a technique for automatic correction of attenuation effects in vascular imaging was developed and validated on a tissue mimicking phantom. The application of this technique to studying contrast enhancement of carotid adventitial vasa vasorum as a biomarker of radiation-induced atherosclerosis was demonstrated. The results showed great potential in reducing attenuation artefact and improve quantification in CEUS of carotid arteries. Furthermore, contrast intensity was shown to significantly increase in irradiated carotid arteries and could be a useful imaging biomarker for radiation-induced atherosclerosis. Secondly, a robust and automated tool for quantification of microbubble identification in CEUS image sequences using a temporal and spatial analysis was developed and validated on a flow phantom. The application of this technique to evaluate human musculoskeletal microcirculation with contrast enhanced ultrasound was demonstrated. The results showed an excellent accuracy and repeatability in quantifying active vascular density. It has great potential for clinical translation in the assessment of lower limb perfusion. Finally, a new bubble activity identification and quantification technique based on differential intensity projection in CEUS was developed and demonstrated with an in-vivo study, and applied to the quantification of intraplaque neovascularisation in an irradiated carotid artery of patients who were previously treated for head and neck cancer. The results showed a significantly more specific identification of bubble signals and had good agreement between the differential intensity-based technique and clinical visual assessment. This technique has potential to assist clinicians to diagnose and monitor intraplque neovascularisation.Open Acces

    Ultrasound localization microscopy to image and assess microvasculature in a rat kidney.

    Get PDF
    The recent development of ultrasound localization microscopy, where individual microbubbles (contrast agents) are detected and tracked within the vasculature, provides new opportunities for imaging the vasculature of entire organs with a spatial resolution below the diffraction limit. In stationary tissue, recent studies have demonstrated a theoretical resolution on the order of microns. In this work, single microbubbles were localized in vivo in a rat kidney using a dedicated high frame rate imaging sequence. Organ motion was tracked by assuming rigid motion (translation and rotation) and appropriate correction was applied. In contrast to previous work, coherence-based non-linear phase inversion processing was used to reject tissue echoes while maintaining echoes from very slowly moving microbubbles. Blood velocity in the small vessels was estimated by tracking microbubbles, demonstrating the potential of this technique to improve vascular characterization. Previous optical studies of microbubbles in vessels of approximately 20 microns have shown that expansion is constrained, suggesting that microbubble echoes would be difficult to detect in such regions. We therefore utilized the echoes from individual MBs as microscopic sensors of slow flow associated with such vessels and demonstrate that highly correlated, wideband echoes are detected from individual microbubbles in vessels with flow rates below 2 mm/s
    • …
    corecore