101 research outputs found

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Integration of as-built building information modeling and augmented reality in construction industry : a case study of the (UTM) ECO-HOME

    Get PDF
    Building Information Modeling (BIM) is becoming increasingly popular in architectural documentation processes in which various stakeholders share data through consistent digital models, keeping workflow up to date to maximize reliability and quality throughout the construction cycle. Most of the constructed buildings might not be built as-designed exactly and 2D drawings are not functional to aid facility managers, viral reliance is on the traditional method to develop as-built drawings leads to greater need of developing accurate and functional 3D as-built BIM through smart workflow. 3D laser scanners are rarely used in construction industry and rarely integrated and practiced with BIM. Moreover, due to less efforts exploring the integration of the digital virtual BIM on site activities, it is predicted that Augmented Reality (AR) can fulfill this vision effectively through visualizing BIM right into the reality. However, some research studies developed workflows using 3D laser scanner to come up with 3D model, as well as workflows to adopt the 3D model into AR platforms separately. Therefore, the aim of this research is to integrate “Scan-BIM” workflow with “BIM-AR” workflow developing newly single integrated workflow. This qualitative case study investigates the current practice of as-built data development based on interviews and practice a modem method of 3D as-built BIM development through an experiment. In this study the integration between SCENE, Revit and Unity3D softwares supported with some extension softwares unveiled the possibility of integrating laser scanning, as-built BIM and AR. This research resulted in an efficient solution in developing “Scan-As-Built BIM-AR” integrated workflow that Architecture, Engineering, Construction and Operation (AECO) industries’ practitioners can use to consolidate, optimize and visualize their models in a real-time AR environment

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous étudions les problèmes de rétro-ingénierie et de contrôle de la qualité qui jouent un rôle important dans la fabrication industrielle. La rétro-ingénierie tente de reconstruire un modèle 3D à partir de nuages de points, qui s’apparente au problème de la reconstruction de la surface 3D. Le contrôle de la qualité est un processus dans lequel la qualité de tous les facteurs impliqués dans la production est abordée. En fait, les systèmes ci-dessus nécessitent beaucoup d’intervention de la part d’un utilisateur expérimenté, résultat souhaité est encore loin soit une automatisation complète du processus. Par conséquent, de nombreux défis doivent encore être abordés pour atteindre ce résultat hautement souhaitable en production automatisée. La première question abordée dans la thèse consiste à extraire les primitives géométriques 3D à partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives à partir de données 3D est proposé. En particulier, une nouvelle méthode de validation est proposée pour évaluer la qualité des primitives extraites. À la fin, toutes les primitives présentes dans le nuage de points sont extraites avec les points de données associés et leurs paramètres descriptifs. Ces résultats pourraient être utilisés dans diverses applications telles que la reconstruction de scènes on d’édifices, la géométrie constructive et etc. La seconde question traiée dans ce travail porte sur l’alignement de deux ensembles de données 3D à l’aide de primitives géométriques, qui sont considérées comme un nouveau descripteur robuste. L’idée d’utiliser les primitives pour l’alignement arrive à surmonter plusieurs défis rencontrés par les méthodes d’alignement existantes. Ce problème d’alignement est une étape essentielle dans la modélisation 3D, la mise en registre, la récupération de modèles. Enfin, nous proposons également une méthode automatique pour extraire les discontinutés à partir de données 3D d’objets manufacturés. En intégrant ces discontinutés au problème d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expérimenté tous les algorithmes proposés sur différents jeux de données synthétiques et réelles. Ces algorithmes ont non seulement réussi à accomplir leur tâches avec succès mais se sont aussi avérés supérieus aux méthodes proposées dans la literature. Les résultats présentés dans le thèse pourraient s’avérér utilises à plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications

    Development of a novel data acquisition and processing methodology applied to the boresight alignment of marine mobile LiDAR systems

    Get PDF
    Le système LiDAR mobile (SLM) est une technologie d'acquisition de données de pointe qui permet de cartographier les scènes du monde réel en nuages de points 3D. Les applications du SLM sont très vastes, de la foresterie à la modélisation 3D des villes, en passant par l'évaluation de l'inventaire routier et la cartographie des infrastructures portuaires. Le SLM peut également être monté sur diverses plateformes, telles que des plateformes aériennes, terrestres, marines, etc. Indépendamment de l'application et de la plateforme, pour s'assurer que le SLM atteigne sa performance optimale et sa meilleure précision, il est essentiel de traiter correctement les erreurs systématiques du système, spécialement l'erreur des angles de visée à laquelle on s'intéresse particulièrement dans cette thèse. L'erreur des angles de visée est définie comme le désalignement rotationnel des deux parties principales du SLM, le système de positionnement et d'orientation et le scanneur LiDAR, introduit par trois angles de visée. En fait, de petites variations angulaires dans ces paramètres peuvent causer des problèmes importants d'incertitude géométrique dans le nuage de points final et il est vital d'employer une méthode d'alignement pour faire face à la problématique de l'erreur des angles de visée de ces systèmes. La plupart des méthodes existantes d'alignement des angles de visée qui ont été principalement développées pour les SLM aériens et terrestres, tirent profit d'éléments in-situ spécifiques et présents sur les sites de levés et adéquats pour ces méthodes. Par exemple, les éléments linéaires et planaires extraits des toits et des façades des maisons. Cependant, dans les environnements sans présence de ces éléments saillants comme la forêt, les zones rurales, les ports, où l'accès aux éléments appropriées pour l'alignement des angles de visée est presque impossible, les méthodes existantes fonctionnent mal, voire même pas du tout. Par conséquent, cette recherche porte sur l'alignement des angles de visée d'un SLM dans un environnement complexe. Nous souhaitons donc introduire une procédure d'acquisition et traitement pour une préparation adéquate des données, qui servira à la méthode d'alignement des angles de visée du SLM. Tout d'abord, nous explorons les différentes possibilités des éléments utilisés dans les méthodes existantes qui peuvent aider à l'identification de l'élément offrant le meilleur potentiel pour l'estimation des angles de visée d'un SLM. Ensuite, nous analysons, parmi un grand nombre de possibles configurations d'éléments (cibles) et patrons de lignes de balayage, celle qui nous apparaît la meilleure. Cette analyse est réalisée dans un environnement de simulation dans le but de générer différentes configurations de cibles et de lignes de balayage pour l'estimation des erreurs des angles de visée afin d'isoler la meilleure configuration possible. Enfin, nous validons la configuration proposée dans un scénario réel, soit l'étude de cas du port de Montréal. Le résultat de la validation révèle que la configuration proposée pour l'acquisition et le traitement des données mène à une méthode rigoureuse d'alignement des angles de visée qui est en même temps précise, robuste et répétable. Pour évaluer les résultats obtenus, nous avons également mis en œuvre une méthode d'évaluation de la précision relative, qui démontre l'amélioration de la précision du nuage de points après l'application de la procédure d'alignement des angles de visée.A Mobile LiDAR system (MLS) is a state-of-the-art data acquisition technology that maps real-world scenes in the form of 3D point clouds. The MLS's list of applications is vast, from forestry to 3D city modeling and road inventory assessment to port infrastructure mapping. The MLS can also be mounted on various platforms, such as aerial, terrestrial, marine, and so on. Regardless of the application and the platform, to ensure that the MLS achieves its optimal performance and best accuracy, it is essential to adequately address the systematic errors of the system, especially the boresight error. The boresight error is the rotational misalignment offset of the two main parts of the MLS, the positioning and orientation system (POS) and the LiDAR scanner. Minor angular parameter variations can cause important geometric accuracy issues in the final point cloud. Therefore, it is vital to employ an alignment method to cope with the boresight error problem of such systems. Most of the existing boresight alignment methods, which have been mainly developed for aerial and terrestrial MLS, take advantage of the in-situ tie-features in the environment that are adequate for these methods. For example, tie-line and tie-plane are extracted from building roofs and facades. However, in low-feature environments like forests, rural areas, ports, and harbors, where access to suitable tie-features for boresight alignment is nearly impossible, the existing methods malfunction or do not function. Therefore, this research addresses the boresight alignment of a marine MLS in a low-feature maritime environment. Thus, we aim to introduce an acquisition procedure for suitable data preparation, which will serve as input for the boresight alignment method of a marine MLS. First, we explore various tie-features introduced in the existing ways that eventually assist in the identification of the suitable tie-feature for the boresight alignment of a marine MLS. Second, we study the best configuration for the data acquisition procedure, i.e., tie-feature(s) characteristics and the necessary scanning line pattern. This study is done in a simulation environment to achieve the best visibility of the boresight errors on the selected suitable tie-feature. Finally, we validate the proposed configuration in a real-world scenario, which is the port of Montreal case study. The validation result reveals that the proposed data acquisition and processing configuration results in an accurate, robust, and repeatable rigorous boresight alignment method. We have also implemented a relative accuracy assessment to evaluate the obtained results, demonstrating an accuracy improvement of the point cloud after the boresight alignment procedure

    Workshop on Strategies for Calibration and Validation of Global Change Measurements

    Get PDF
    The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented

    Feature-based hybrid inspection planning for complex mechanical parts

    Get PDF
    Globalization and emerging new powers in the manufacturing world are among many challenges, major manufacturing enterprises are facing. This resulted in increased alternatives to satisfy customers\u27 growing needs regarding products\u27 aesthetic and functional requirements. Complexity of part design and engineering specifications to satisfy such needs often require a better use of advanced and more accurate tools to achieve good quality. Inspection is a crucial manufacturing function that should be further improved to cope with such challenges. Intelligent planning for inspection of parts with complex geometric shapes and free form surfaces using contact or non-contact devices is still a major challenge. Research in segmentation and localization techniques should also enable inspection systems to utilize modern measurement technologies capable of collecting huge number of measured points. Advanced digitization tools can be classified as contact or non-contact sensors. The purpose of this thesis is to develop a hybrid inspection planning system that benefits from the advantages of both techniques. Moreover, the minimization of deviation of measured part from the original CAD model is not the only characteristic that should be considered when implementing the localization process in order to accept or reject the part; geometric tolerances must also be considered. A segmentation technique that deals directly with the individual points is a necessary step in the developed inspection system, where the output is the actual measured points, not a tessellated model as commonly implemented by current segmentation tools. The contribution of this work is three folds. First, a knowledge-based system was developed for selecting the most suitable sensor using an inspection-specific features taxonomy in form of a 3D Matrix where each cell includes the corresponding knowledge rules and generate inspection tasks. A Travel Salesperson Problem (TSP) has been applied for sequencing these hybrid inspection tasks. A novel region-based segmentation algorithm was developed which deals directly with the measured point cloud and generates sub-point clouds, each of which represents a feature to be inspected and includes the original measured points. Finally, a new tolerance-based localization algorithm was developed to verify the functional requirements and was applied and tested using form tolerance specifications. This research enhances the existing inspection planning systems for complex mechanical parts with a hybrid inspection planning model. The main benefits of the developed segmentation and tolerance-based localization algorithms are the improvement of inspection decisions in order not to reject good parts that would have otherwise been rejected due to misleading results from currently available localization techniques. The better and more accurate inspection decisions achieved will lead to less scrap, which, in turn, will reduce the product cost and improve the company potential in the market

    Algorithms for Geometric Optimization and Enrichment in Industrialized Building Construction

    Get PDF
    The burgeoning use of industrialized building construction, coupled with advances in digital technologies, is unlocking new opportunities to improve the status quo of construction projects being over-budget, delayed and having undesirable quality. Yet there are still several objective barriers that need to be overcome in order to fully realize the full potential of these innovations. Analysis of literature and examples from industry reveal the following notable barriers: (1) geometric optimization methods need to be developed for the stricter dimensional requirements in industrialized construction, (2) methods are needed to preserve model semantics during the process of generating an updated as-built model, (3) semantic enrichment methods are required for the end-of-life stage of industrialized buildings, and (4) there is a need to develop pragmatic approaches for algorithms to ensure they achieve required computational efficiency. The common thread across these examples is the need for developing algorithms to optimize and enrich geometric models. To date, a comprehensive approach paired with pragmatic solutions remains elusive. This research fills this gap by presenting a new approach for algorithm development along with pragmatic implementations for the industrialized building construction sector. Computational algorithms are effective for driving the design, analysis, and optimization of geometric models. As such, this thesis develops new computational algorithms for design, fabrication and assembly, onsite construction, and end-of-life stages of industrialized buildings. A common theme throughout this work is the development and comparison of varied algorithmic approaches (i.e., exact vs. approximate solutions) to see which is optimal for a given process. This is implemented in the following ways. First, a probabilistic method is used to simulate the accumulation of dimensional tolerances in order to optimize geometric models during design. Second, a series of exact and approximate algorithms are used to optimize the topology of 2D panelized assemblies to minimize material use during fabrication and assembly. Third, a new approach to automatically update geometric models is developed whereby initial model semantics are preserved during the process of generating an as-built model. Finally, a series of algorithms are developed to semantically enrich geometric models to enable industrialized buildings to be disassembled and reused. The developments made in this research form a rational and pragmatic approach to addressing the existing challenges faced in industrialized building construction. Such developments are shown not only to be effective in improving the status quo in the industry (i.e., improving cost, reducing project duration, and improving quality), but also for facilitating continuous innovation in construction. By way of assessing the potential impact of this work, the proposed algorithms can reduce rework risk during fabrication and assembly (65% rework reduction in the case study for the new tolerance simulation algorithm), reduce waste during manufacturing (11% waste reduction in the case study for the new panel unfolding and nesting algorithms), improve accuracy and automation of as-built model generation (model error reduction from 50.4 mm to 5.7 mm in the case study for the new parametric BIM updating algorithms), reduce lifecycle cost for adapting industrialized buildings (15% reduction in capital costs in the computational building configurator) and reducing lifecycle impacts for reusing structural systems from industrialized buildings (between 54% to 95% reduction in average lifecycle impacts for the approach illustrated in Appendix B). From a computational standpoint, the novelty of the algorithms developed in this research can be described as follows. Complex geometric processes can be codified solely on the innate properties of geometry – that is, by parameterizing geometry and using methods such as combinatorial optimization, topology can be optimized and semantics can be automatically enriched for building assemblies. Employing the use of functional discretization (whereby continuous variable domains are converted into discrete variable domains) is shown to be highly effective for complex geometric optimization approaches. Finally, the algorithms encapsulate and balance the benefits posed by both parametric and non-parametric schemas, resulting in the ability to achieve both high representational accuracy and semantically rich information (which has previously not been achieved or demonstrated). In summary, this thesis makes several key improvements to industrialized building construction. One of the key findings is that rather than pre-emptively determining the best suited algorithm for a given process or problem, it is often more pragmatic to derive both an exact and approximate solution and then decide which is optimal to use for a given process. Generally, most tasks related to optimizing or enriching geometric models is best solved using approximate methods. To this end, this research presents a series of key techniques that can be followed to improve the temporal performance of algorithms. The new approach for developing computational algorithms and the pragmatic demonstrations for geometric optimization and enrichment are expected to bring the industry forward and solve many of the current barriers it faces

    Semantic location extraction from crowdsourced data

    Get PDF
    Crowdsourced Data (CSD) has recently received increased attention in many application areas including disaster management. Convenience of production and use, data currency and abundancy are some of the key reasons for attracting this high interest. Conversely, quality issues like incompleteness, credibility and relevancy prevent the direct use of such data in important applications like disaster management. Moreover, location information availability of CSD is problematic as it remains very low in many crowd sourced platforms such as Twitter. Also, this recorded location is mostly related to the mobile device or user location and often does not represent the event location. In CSD, event location is discussed descriptively in the comments in addition to the recorded location (which is generated by means of mobile device's GPS or mobile communication network). This study attempts to semantically extract the CSD location information with the help of an ontological Gazetteer and other available resources. 2011 Queensland flood tweets and Ushahidi Crowd Map data were semantically analysed to extract the location information with the support of Queensland Gazetteer which is converted to an ontological gazetteer and a global gazetteer. Some preliminary results show that the use of ontologies and semantics can improve the accuracy of place name identification of CSD and the process of location information extraction
    • …
    corecore