346 research outputs found

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Single-pass inline pipeline 3D reconstruction using depth camera array

    Get PDF
    A novel inline inspection (ILI) approach using depth cameras array (DCA) is introduced to create high-fidelity, dense 3D pipeline models. A new camera calibration method is introduced to register the color and the depth information of the cameras into a unified pipe model. By incorporating the calibration outcomes into a robust camera motion estimation approach, dense and complete 3D pipe surface reconstruction is achieved by using only the inline image data collected by a self-powered ILI rover in a single pass through a straight pipeline. The outcomes of the laboratory experiments demonstrate one-millimeter geometrical accuracy and 0.1-pixel photometric accuracy. In the reconstructed model of a longer pipeline, the proposed method generates the dense 3D surface reconstruction model at the millimeter level accuracy with less than 0.5% distance error. The achieved performance highlights its potential as a useful tool for efficient in-line, non-destructive evaluation of pipeline assets

    3D Data Acquisition and Registration using Two Opposing Kinects

    Get PDF

    Fusion4D: Real-time Performance Capture of Challenging Scenes

    Get PDF
    We contribute a new pipeline for live multi-view performance capture, generating temporally coherent high-quality reconstructions in real-time. Our algorithm supports both incremental reconstruction, improving the surface estimation over time, as well as parameterizing the nonrigid scene motion. Our approach is highly robust to both large frame-to-frame motion and topology changes, allowing us to reconstruct extremely challenging scenes. We demonstrate advantages over related real-time techniques that either deform an online generated template or continually fuse depth data nonrigidly into a single reference model. Finally, we show geometric reconstruction results on par with offline methods which require orders of magnitude more processing time and many more RGBD cameras

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    A Comparative Study of Registration Methods for RGB-D Video of Static Scenes

    Get PDF
    The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.This work has been supported by a grant from the Spanish Government, DPI2013-40534-R, University of Alicante projects GRE11-01 and a grant from the Valencian Government, GV/2013/005
    • …
    corecore