736 research outputs found

    Registration of Ultrasound Images Using an Information-Theoretic Feature Detector

    Get PDF
    In this paper, we present a new method for ultrasound image registration. For each image to be registered, our method first applies an ultrasound-specific information-theoretic feature detector, which is based on statistical modeling of speckle and provides a feature image that robustly delineates important edges in the image. These feature images are then registered using differential equations, the solution of which provides a locally optimal transformation that brings the images into alignment. We describe our method and present experimental results demonstrating its effectiveness, particularly for low contrast, speckled images. Furthermore, we compare our method to standard gradient-based techniques, which we show are more susceptible to misregistration

    Information-Theoretic Feature Detection in Ultrasound Images

    Get PDF

    Detection of linear features including bone and skin areas in ultrasound images of joints

    Get PDF

    Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Get PDF
    This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM), is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Hypothesis Validation of Far-Wall Brightness in Carotid-Artery Ultrasound for Feature-Based IMT Measurement Using a Combination of Level-Set Segmentation and Registration

    Get PDF
    Intima-media thickness (IMT) is now being considered as an indicator of atherosclerosis. Our group has developed several feature-based IMT measurement algorithms such as the Completely Automated Layer EXtraction (CALEX) (which is a class of patented AtheroEdge Systems from Global Biomedical Technologies, Inc., CA, USA). These methods are based on the hypothesis that the highest pixel intensities are in the far wall of the common carotid artery (CCA) or the internal carotid artery (ICA). In this paper, we verify that this hypothesis holds true for B-mode longitudinal ultrasound (US) images of the carotid wall. This patented methodology consists of generating the composite image (the arithmetic sum of images) from the database by first registering the carotid image frames with respect to a nearly straight carotid-artery frame from the same database using: 1) B-spline-based nonrigid registration and 2) affine registration. Prior to registration, we segment the carotid-artery lumen using a level-set-based algorithm followed by morphological image processing. The binary lumen images are registered, and the transformations are applied to the original grayscale CCA images. We evaluated our technique using a database of 200 common carotid images of normal and pathologic carotids. The composite image presented the highest intensity distribution in the far wall of the CCA/ICA, validating our hypothesis. We have also demonstrated the accuracy and improvement in the IMT segmentation result with our CALEX 3.0 system. The CALEX system, when run on newly acquired US images, shows the IMT error of about 30 mu m. Thus, we have shown that the CALEX algorithm is able to exploit the far-wall brightness for accurate IMT measurements
    corecore