589 research outputs found

    Computer-assisted motion compensation and analysis of perfusion ultrasound data

    Get PDF
    Magdeburg, Univ., Fak. für Informatik, Diss., 2014von Sebastian Schäfe

    In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy.

    Get PDF
    OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo. EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively assessed in CA1, CA2/3, and CA4/DG. PRINCIPAL OBSERVATIONS: MRI volumes across all subfields were positively correlated with neuronal density and size. Higher T2 intensity related to increased GFAP fraction in CA1, while quantitative T1 and diffusion MRI parameters showed negative correlations with neuronal density in CA4 and DG. Multiple linear regression analysis revealed that in vivo multiparametric MRI can predict neuronal loss in all the analyzed subfields with up to 90% accuracy. CONCLUSION: Our results, based on an accurate co-registration pipeline and a subfield-specific analysis of MRI and histology, demonstrate the potential of MRI volumetry, diffusion, and quantitative T1 as accurate in vivo biomarkers of hippocampal pathology

    Anisotropic Diffusion Filter with Memory based on Speckle Statistics for Ultrasound Images

    Get PDF
    Ultrasound imaging exhibits considerable difficulties for medical visual inspection and for the development of automatic analysis methods due to speckle, which negatively affects the perception of tissue boundaries and the performance of automatic segmentation methods. With the aim of alleviating the effect of speckle, many filtering techniques are usually considered as a preprocessing step prior to automatic analysis methods or visual inspection. Most of the state-of-the-art filters try to reduce the speckle effect without considering its relevance for the characterization of tissue nature. However, the speckle phenomenon is the inherent response of echo signals in tissues and can provide important features for clinical purposes. This loss of information is even magnified due to the iterative process of some speckle filters, e.g., diffusion filters, which tend to produce over-filtering because of the progressive loss of relevant information for diagnostic purposes during the diffusion process. In this work, we propose an anisotropic diffusion filter with a probabilistic-driven memory mechanism to overcome the over-filtering problem by following a tissue selective philosophy. Specifically, we formulate the memory mechanism as a delay differential equation for the diffusion tensor whose behavior depends on the statistics of the tissues, by accelerating the diffusion process in meaningless regions and including the memory effect in regions where relevant details should be preserved. Results both in synthetic and real US images support the inclusion of the probabilistic memory mechanism for maintaining clinical relevant structures, which are removed by the state-of-the-art filters

    Doctor of Philosophy

    Get PDF
    dissertationCongenital heart defects are classes of birth defects that affect the structure and function of the heart. These defects are attributed to the abnormal or incomplete development of a fetal heart during the first few weeks following conception. The overall detection rate of congenital heart defects during routine prenatal examination is low. This is attributed to the insufficient number of trained personnel in many local health centers where many cases of congenital heart defects go undetected. This dissertation presents a system to identify congenital heart defects to improve pregnancy outcomes and increase their detection rates. The system was developed and its performance assessed in identifying the presence of ventricular defects (congenital heart defects that affect the size of the ventricles) using four-dimensional fetal chocardiographic images. The designed system consists of three components: 1) a fetal heart location estimation component, 2) a fetal heart chamber segmentation component, and 3) a detection component that detects congenital heart defects from the segmented chambers. The location estimation component is used to isolate a fetal heart in any four-dimensional fetal echocardiographic image. It uses a hybrid region of interest extraction method that is robust to speckle noise degradation inherent in all ultrasound images. The location estimation method's performance was analyzed on 130 four-dimensional fetal echocardiographic images by comparison with manually identified fetal heart region of interest. The location estimation method showed good agreement with the manually identified standard using four quantitative indexes: Jaccard index, Sørenson-Dice index, Sensitivity index and Specificity index. The average values of these indexes were measured at 80.70%, 89.19%, 91.04%, and 99.17%, respectively. The fetal heart chamber segmentation component uses velocity vector field estimates computed on frames contained in a four-dimensional image to identify the fetal heart chambers. The velocity vector fields are computed using a histogram-based optical flow technique which is formulated on local image characteristics to reduces the effect of speckle noise and nonuniform echogenicity on the velocity vector field estimates. Features based on the velocity vector field estimates, voxel brightness/intensity values, and voxel Cartesian coordinate positions were extracted and used with kernel k-means algorithm to identify the individual chambers. The segmentation method's performance was evaluated on 130 images from 31 patients by comparing the segmentation results with manually identified fetal heart chambers. Evaluation was based on the Sørenson-Dice index, the absolute volume difference and the Hausdorff distance, with each resulting in per patient average values of 69.92%, 22.08%, and 2.82 mm, respectively. The detection component uses the volumes of the identified fetal heart chambers to flag the possible occurrence of hypoplastic left heart syndrome, a type of congenital heart defect. An empirical volume threshold defined on the relative ratio of adjacent fetal heart chamber volumes obtained manually is used in the detection process. The performance of the detection procedure was assessed by comparison with a set of images with confirmed diagnosis of hypoplastic left heart syndrome and a control group of normal fetal hearts. Of the 130 images considered 18 of 20 (90%) fetal hearts were correctly detected as having hypoplastic left heart syndrome and 84 of 110 (76.36%) fetal hearts were correctly detected as normal in the control group. The results show that the detection system performs better than the overall detection rate for congenital heart defect which is reported to be between 30% and 60%

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy
    • …
    corecore