4,815 research outputs found

    3-D model construction using range and image data

    Get PDF
    This paper deals with the automated creation of geometric and photometric correct 3-D models of the world. Those models can be used for virtual reality, tele-presence, digital cinematography and urban planning applications. The combination of range (dense depth estimates) and image sensing (color information) provides data-sets which allow us to create geometrically correct, photorealistic models of high quality. The 3-D models are first built from range data using a volumetric set intersection method previously developed by us. Photometry can be mapped onto these models by registering features from both the 3-D and 2-D data sets. Range data segmentation algorithms have been developed to identify planar regions, determine linear features from planar intersections that can serve as features for registration with 2-D imagery lines, and reduce the overall complexity of the models. Results are shown for building models of large buildings on our campus using real data acquired from multiple sensors

    Reconstruction of 3D Urban Scenes Using a Moving Lidar Sensor

    Get PDF
    In this report, we propose algorithms which interpret and display 3D environments.The input of this procedure is a LiDAR sensor mounted atop of a car. The sensor outputs a data stream covering more than 100 meters radius of space, collecting data at 15Hz. The recording is done in real environment on the streets of Budapest in real time, while the processing is offline, implemented on CPU keeping in mind the future implementation on GPUs to reach real time data processing. The aim is to segment several region classes (such as roads, building walls, vegetation) and to identify specified objects (such as people, vehicles, traffic signs) in the point clouds through a presegmentation step. To achieve this classification, we need several features such as the color and geometrical properties of the specified objects and their possible geometrical and physical interactions. Also, we need to take into account the time domain features calculated based on the LiDAR data stream. After this presegmentation step we are able to reconstruct building facades in 3D and to track the detected objects in the 3D space. Also, in the future, this processed data set can be registered against 2D images provided by conventional cameras to reproduce realistic, colored 3D virtua

    Relating Multimodal Imagery Data in 3D

    Get PDF
    This research develops and improves the fundamental mathematical approaches and techniques required to relate imagery and imagery derived multimodal products in 3D. Image registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry on the target. Therefore, effects such as occlusion, parallax, shadowing, and terrain/building elevation can often be mitigated with even a modest amounts of 3D target modeling. Additionally, the imaged scene may appear radically different based on the sensed modality of interest; this is evident from the differences in visible, infrared, polarimetric, and radar imagery of the same site. This thesis develops a `model-centric\u27 approach to relating multimodal imagery in a 3D environment. By correctly modeling a site of interest, both geometrically and physically, it is possible to remove/mitigate some of the most difficult challenges associated with multimodal image registration. In order to accomplish this feat, the mathematical framework necessary to relate imagery to geometric models is thoroughly examined. Since geometric models may need to be generated to apply this `model-centric\u27 approach, this research develops methods to derive 3D models from imagery and LIDAR data. Of critical note, is the implementation of complimentary techniques for relating multimodal imagery that utilize the geometric model in concert with physics based modeling to simulate scene appearance under diverse imaging scenarios. Finally, the often neglected final phase of mapping localized image registration results back to the world coordinate system model for final data archival are addressed. In short, once a target site is properly modeled, both geometrically and physically, it is possible to orient the 3D model to the same viewing perspective as a captured image to enable proper registration. If done accurately, the synthetic model\u27s physical appearance can simulate the imaged modality of interest while simultaneously removing the 3-D ambiguity between the model and the captured image. Once registered, the captured image can then be archived as a texture map on the geometric site model. In this way, the 3D information that was lost when the image was acquired can be regained and properly related with other datasets for data fusion and analysis

    Sketching space

    Get PDF
    In this paper, we present a sketch modelling system which we call Stilton. The program resembles a desktop VRML browser, allowing a user to navigate a three-dimensional model in a perspective projection, or panoramic photographs, which the program maps onto the scene as a `floor' and `walls'. We place an imaginary two-dimensional drawing plane in front of the user, and any geometric information that user sketches onto this plane may be reconstructed to form solid objects through an optimization process. We show how the system can be used to reconstruct geometry from panoramic images, or to add new objects to an existing model. While panoramic imaging can greatly assist with some aspects of site familiarization and qualitative assessment of a site, without the addition of some foreground geometry they offer only limited utility in a design context. Therefore, we suggest that the system may be of use in `just-in-time' CAD recovery of complex environments, such as shop floors, or construction sites, by recovering objects through sketched overlays, where other methods such as automatic line-retrieval may be impossible. The result of using the system in this manner is the `sketching of space' - sketching out a volume around the user - and once the geometry has been recovered, the designer is free to quickly sketch design ideas into the newly constructed context, or analyze the space around them. Although end-user trials have not, as yet, been undertaken we believe that this implementation may afford a user-interface that is both accessible and robust, and that the rapid growth of pen-computing devices will further stimulate activity in this area

    Imaging methods for understanding and improving visual training in the geosciences

    Get PDF
    Experience in the field is a critical educational component of every student studying geology. However, it is typically difficult to ensure that every student gets the necessary experience because of monetary and scheduling limitations. Thus, we proposed to create a virtual field trip based off of an existing 10-day field trip to California taken as part of an undergraduate geology course at the University of Rochester. To assess the effectiveness of this approach, we also proposed to analyze the learning and observation processes of both students and experts during the real and virtual field trips. At sites intended for inclusion in the virtual field trip, we captured gigapixel resolution panoramas by taking hundreds of images using custom built robotic imaging systems. We gathered data to analyze the learning process by fitting each geology student and expert with a portable eye- tracking system that records a video of their eye movements and a video of the scene they are observing. An important component of analyzing the eye-tracking data requires mapping the gaze of each observer into a common reference frame. We have made progress towards developing a software tool that helps automate this procedure by using image feature tracking and registration methods to map the scene video frames from each eye-tracker onto a reference panorama for each site. For the purpose of creating a virtual field trip, we have a large scale semi-immersive display system that consists of four tiled projectors, which have been colorimetrically and photometrically calibrated, and a curved widescreen display surface. We use this system to present the previously captured panoramas, which simulates the experience of visiting the sites in person. In terms of broader geology education and outreach, we have created an interactive website that uses Google Earth as the interface for visually exploring the panoramas captured for each site
    corecore