353 research outputs found

    The Lost Melody Phenomenon

    Full text link
    A typical phenomenon for machine models of transfinite computations is the existence of so-called lost melodies, i.e. real numbers xx such that the characteristic function of the set {x}\{x\} is computable while xx itself is not (a real having the first property is called recognizable). This was first observed by J. D. Hamkins and A. Lewis for infinite time Turing machine, then demonstrated by P. Koepke and the author for ITRMITRMs. We prove that, for unresetting infinite time register machines introduced by P. Koepke, recognizability equals computability, i.e. the lost melody phenomenon does not occur. Then, we give an overview on our results on the behaviour of recognizable reals for ITRMITRMs. We show that there are no lost melodies for ordinal Turing machines or ordinal register machines without parameters and that this is, under the assumption that 0♯0^{\sharp} exists, independent of ZFCZFC. Then, we introduce the notions of resetting and unresetting α\alpha-register machines and give some information on the question for which of these machines there are lost melodies

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Towards a Church-Turing-Thesis for Infinitary Computations

    Full text link
    We consider the question whether there is an infinitary analogue of the Church-Turing-thesis. To this end, we argue that there is an intuitive notion of transfinite computability and build a canonical model, called Idealized Agent Machines (IAMIAMs) of this which will turn out to be equivalent in strength to the Ordinal Turing Machines defined by P. Koepke

    Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals

    Full text link
    We describe the basic theory of infinite time Turing machines and some recent developments, including the infinite time degree theory, infinite time complexity theory, and infinite time computable model theory. We focus particularly on the application of infinite time Turing machines to the analysis of the hierarchy of equivalence relations on the reals, in analogy with the theory arising from Borel reducibility. We define a notion of infinite time reducibility, which lifts much of the Borel theory into the class Δ21\bm{\Delta}^1_2 in a satisfying way.Comment: Submitted to the Effective Mathematics of the Uncountable Conference, 200

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice
    • …
    corecore