847 research outputs found

    Virtual cluster scheduling through the scheduling graph

    Get PDF
    This paper presents an instruction scheduling and cluster assignment approach for clustered processors. The proposed technique makes use of a novel representation named the scheduling graph which describes all possible schedules. A powerful deduction process is applied to this graph, reducing at each step the set of possible schedules. In contrast to traditional list scheduling techniques, the proposed scheme tries to establish relations among instructions rather than assigning each instruction to a particular cycle. The main advantage is that wrong or poor schedules can be anticipated and discarded earlier. In addition, cluster assignment of instructions is performed using another novel concept called virtual clusters, which define sets of instructions that must execute in the same cluster. These clusters are managed during the deduction process to identify incompatibilities among instructions. The mapping of virtual to physical clusters is postponed until the scheduling of the instructions has finalized. The advantages this novel approach features include: (1) accurate scheduling information when assigning, and, (2) accurate information of the cluster assignment constraints imposed by scheduling decisions. We have implemented and evaluated the proposed scheme with superblocks extracted from Speclnt95 and MediaBench. The results show that this approach produces better schedules than the previous state-of-the-art. Speed-ups are up to 15%, with average speed-ups ranging from 2.5% (2-Clusters) to 9.5% (4-Clusters).Peer ReviewedPostprint (published version

    Learning Combinatorial Node Labeling Algorithms

    Full text link
    We present a graph neural network to learn graph coloring heuristics using reinforcement learning. Our learned deterministic heuristics give better solutions than classical degree-based greedy heuristics and only take seconds to evaluate on graphs with tens of thousands of vertices. As our approach is based on policy-gradients, it also learns a probabilistic policy as well. These probabilistic policies outperform all greedy coloring baselines and a machine learning baseline. Our approach generalizes several previous machine-learning frameworks, which applied to problems like minimum vertex cover. We also demonstrate that our approach outperforms two greedy heuristics on minimum vertex cover
    corecore