6,003 research outputs found

    Satellite Positioning

    Get PDF
    Satellite positioning techniques, particularly global navigation satellite systems (GNSS), are capable of measuring small changes of the Earths shape and atmosphere, as well as surface characteristics with an unprecedented accuracy. This book is devoted to presenting recent results and development in satellite positioning technique and applications, including GNSS positioning methods, models, atmospheric sounding, and reflectometry as well their applications in the atmosphere, land, oceans and cryosphere. This book provides a good reference for satellite positioning techniques, engineers, scientists as well as user community

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Improving Estimates of Gross Primary Productivity by Assimilating Solar-Induced Fluorescence Satellite Retrievals in a Terrestrial Biosphere Model Using a Process-Based SIF Model

    Get PDF
    Abstract Over the last few years, solar-induced chlorophyll fluorescence (SIF) observations from space have emerged as a promising resource for evaluating the spatio-temporal distribution of gross primary productivity (GPP) simulated by global terrestrial biosphere models. SIF can be used to improve GPP simulations by optimizing critical model parameters through statistical Bayesian data assimilation techniques. A prerequisite is the availability of a functional link between GPP and SIF in terrestrial biosphere models. Here we present the development of a mechanistic SIF observation operator in the ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems) terrestrial biosphere model. It simulates the regulation of photosystem II fluorescence quantum yield at the leaf level thanks to a novel parameterization of non-photochemical quenching as a function of temperature, photosynthetically active radiation, and normalized quantum yield of photochemistry. It emulates the radiative transfer of chlorophyll fluorescence to the top of the canopy using a parametric simplification of the SCOPE (Soil Canopy Observation Photosynthesis Energy) model. We assimilate two years of monthly OCO-2 (Orbiting Carbon Observatory-2) SIF product at 0.5° (2015?2016) to optimize ORCHIDEE photosynthesis and phenological parameters over an ensemble of grid points for all plant functional types. The impact on the simulated GPP is considerable with a large decrease of the global scale budget by 28 GtC/year over the period 1990?2009. The optimized GPP budget (134/136 GtC/year over 1990?2009/2001?2009) remarkably agrees with independent GPP estimates, FLUXSAT (137 GtC/year over 2001?2009) in particular and FLUXCOM (121 GtC/year over 1990?2009). Our results also suggest a biome dependency of the SIF-GPP relationship that needs to be improved for some plant functional types.Peer reviewe

    Evaluation of Parametric Limitations in Simulating Greenhouse Gas Fluxes from Irish Arable Soils Using Three Process-Based Models

    Get PDF
    The senior author gratefully acknowledges the funding by the Science, Technology, Research and Innovation for the Environment (STRIVE) Programme of the Irish Government under the National Development Plan 2007-2013 and the Department of the Environment, Heritage and Local Government. The authors would like to thanks Phillip O’Brien (EPA) for extending technical and relevant support; Mike Williams, Mike Jones and Matt Saunders (TCD), Komsan Rueangritsarakul and Mohamed Helmy (UCD) for supplying experimental data for modelling work; as well as Tom Bolger and Tommy Gallagher (UCD) for providing administrative support.Peer reviewedPublisher PD

    Seasonal mapping of irrigated winter wheat traits in Argentina with a hybrid retrieval workflow using sentinel-2 imagery

    Get PDF
    Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop’s phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2 and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.Fil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; Uruguay. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Rivera Caicedo, Juan Pablo. CONACYT-UAN. Secretary of Research and Graduate Studies; MéxicoFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); España. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); Españ

    Advances in Evaporation and Evaporative Demand

    Get PDF
    The importance of evapotranspiration is well-established in different disciplines such as hydrology, agronomy, climatology, and other geosciences. Reliable estimates of evapotranspiration are also vital to develop criteria for in-season irrigation management, water resource allocation, long-term estimates of water supply, demand and use, design and management of water resources infrastructure, and evaluation of the effect of land use and management changes on the water balance. The objective of this Special Issue is to define and discuss several ET terms, including potential, reference, and actual (crop) ET, and present a wide spectrum of innovative research papers and case studies

    Somatic condition, growth and distribution of Atlantic bluefin tuna (Thunnus thynnus) in the Gulf of Maine

    Get PDF
    Atlantic bluefin tuna (Thunnus thynnus), a highly migratory apex predator, utilize temperate feeding grounds to place their tissues into positive lipid balance following reproduction and subsequent migration to northern latitudes. Commercial fishermen target Atlantic bluefin tuna between June and October, but landings have declined 70% from 2004-2009 suggesting adult bluefin tuna may no longer be utilizing the Gulf of Maine as a foraging ground. A series of linear and additive models fitted to multiple fishery dependent datasets identified significant declines in the somatic condition of Atlantic bluefin tuna in the Gulf of Maine. Significant changes in the somatic condition of Atlantic herring, increases in the landings of the commercial herring fleet and changes in Atlantic herring gonad size were also identified. New growth parameters were estimated for Atlantic bluefin tuna sampled in the western Atlantic and these are significantly different than previous estimates for bluefin tuna greater than eight years of age. Finally, there has been a significant shift in the distribution of Atlantic bluefin tuna surface schools greater than 350 kilometers to the east over the past 28 years. Significant associations between Atlantic bluefin tuna and Atlantic herring schools were also identified, but long-term shifts in Atlantic herring distributions did not follow the same trend as Atlantic bluefin tuna. These results suggest bottom-up and top-down mechanisms are responsible for the changes in somatic condition and distribution of Atlantic bluefin tuna in the Gulf of Maine

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974
    • …
    corecore