1,407 research outputs found

    A graph-based integration of multimodal brain imaging data for the detection of early mild cognitive impairment (E-MCI)

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in older adults. By the time an individual has been diagnosed with AD, it may be too late for potential disease modifying therapy to strongly influence outcome. Therefore, it is critical to develop better diagnostic tools that can recognize AD at early symptomatic and especially pre-symptomatic stages. Mild cognitive impairment (MCI), introduced to describe a prodromal stage of AD, is presently classified into early and late stages (E-MCI, L-MCI) based on severity. Using a graph-based semi-supervised learning (SSL) method to integrate multimodal brain imaging data and select valid imaging-based predictors for optimizing prediction accuracy, we developed a model to differentiate E-MCI from healthy controls (HC) for early detection of AD. Multimodal brain imaging scans (MRI and PET) of 174 E-MCI and 98 HC participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort were used in this analysis. Mean targeted region-of-interest (ROI) values extracted from structural MRI (voxel-based morphometry (VBM) and FreeSurfer V5) and PET (FDG and Florbetapir) scans were used as features. Our results show that the graph-based SSL classifiers outperformed support vector machines for this task and the best performance was obtained with 66.8% cross-validated AUC (area under the ROC curve) when FDG and FreeSurfer datasets were integrated. Valid imaging-based phenotypes selected from our approach included ROI values extracted from temporal lobe, hippocampus, and amygdala. Employing a graph-based SSL approach with multimodal brain imaging data appears to have substantial potential for detecting E-MCI for early detection of prodromal AD warranting further investigation

    EANM-EAN recommendations for the use of brain 18 F-Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) in neurodegenerative cognitive impairment and dementia: Delphi consensus

    Get PDF
    BACKGROUND: Recommendations for using FDG-PET to support the diagnosis of dementing neurodegenerative disorders are sparse and poorly structured. METHODS: We defined 21 questions on diagnostic issues and on semi-automated analysis to assist visual reading. Literature was reviewed to assess study design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG-PET in detecting the target conditions. Using the Delphi method, an expert panel voted for/against the use of FDG-PET based on published evidence and expert opinion. RESULTS: Of the 1435 papers, 58 provided proper quantitative assessment of test performance. The panel agreed on recommending FDG-PET for 14 questions: diagnosing mild cognitive impairment due to Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) or dementia with Lewy bodies (DLB); diagnosing atypical AD and pseudodementia; differentiating between AD and DLB, FTLD, or vascular dementia, between DLB and FTLD, and between Parkinson's disease (PD) and progressive supranuclear palsy; suggesting underlying pathophysiology in corticobasal degeneration and progressive primary aphasia, and cortical dysfunction in PD; using semi-automated assessment to assist visual reading. Panelists did not support FDG-PET use for preclinical stages of neurodegenerative disorders, for amyotrophic lateral sclerosis (ALS) and Huntington disease (HD) diagnoses, and ALS or HD-related cognitive decline. CONCLUSIONS: Despite limited formal evidence, panelists deemed FDG-PET useful in the early and differential diagnosis of the main neurodegenerative disorders, and semiautomated assessment helpful to assist visual reading. These decisions are proposed as interim recommendations. This article is protected by copyright. All rights reserved

    Systems modeling of white matter microstructural abnormalities in Alzheimer's disease

    Get PDF
    INTRODUCTION: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION: Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD

    Label-aligned multi-task feature learning for multimodal classification of Alzheimerā€™s disease and mild cognitive impairment

    Get PDF
    Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimerā€™s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimerā€™s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI
    • ā€¦
    corecore