27,567 research outputs found

    A Weakly Supervised Approach for Estimating Spatial Density Functions from High-Resolution Satellite Imagery

    Full text link
    We propose a neural network component, the regional aggregation layer, that makes it possible to train a pixel-level density estimator using only coarse-grained density aggregates, which reflect the number of objects in an image region. Our approach is simple to use and does not require domain-specific assumptions about the nature of the density function. We evaluate our approach on several synthetic datasets. In addition, we use this approach to learn to estimate high-resolution population and housing density from satellite imagery. In all cases, we find that our approach results in better density estimates than a commonly used baseline. We also show how our housing density estimator can be used to classify buildings as residential or non-residential.Comment: 10 pages, 8 figures. ACM SIGSPATIAL 2018, Seattle, US

    Impervious surface estimation using remote sensing images and gis : how accurate is the estimate at subdivision level?

    Get PDF
    Impervious surface has long been accepted as a key environmental indicator linking development to its impacts on water. Many have suggested that there is a direct correlation between degree of imperviousness and both quantity and quality of water. Quantifying the amount of impervious surface, however, remains difficult and tedious especially in urban areas. Lately more efforts have been focused on the application of remote sensing and GIS technologies in assessing the amount of impervious surface and many have reported promising results at various pixel levels. This paper discusses an attempt at estimating the amount of impervious surface at subdivision level using remote sensing images and GIS techniques. Using Landsat ETM+ images and GIS techniques, a regression tree model is first developed for estimating pixel imperviousness. GIS zonal functions are then used to estimate the amount of impervious surface for a sample of subdivisions. The accuracy of the model is evaluated by comparing the model-predicted imperviousness to digitized imperviousness at the subdivision level. The paper then concludes with a discussion on the convenience and accuracy of using the method to estimate imperviousness for large areas

    Evolving Spatially Aggregated Features from Satellite Imagery for Regional Modeling

    Full text link
    Satellite imagery and remote sensing provide explanatory variables at relatively high resolutions for modeling geospatial phenomena, yet regional summaries are often desirable for analysis and actionable insight. In this paper, we propose a novel method of inducing spatial aggregations as a component of the machine learning process, yielding regional model features whose construction is driven by model prediction performance rather than prior assumptions. Our results demonstrate that Genetic Programming is particularly well suited to this type of feature construction because it can automatically synthesize appropriate aggregations, as well as better incorporate them into predictive models compared to other regression methods we tested. In our experiments we consider a specific problem instance and real-world dataset relevant to predicting snow properties in high-mountain Asia

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Enhancement and evaluation of Skylab photography for potential land use inventories, part 1

    Get PDF
    The author has identified the following significant results. Three sites were evaluated for land use inventory: Finger Lakes - Tompkins County, Lower Hudson Valley - Newburgh, and Suffolk County - Long Island. Special photo enhancement processes were developed to standardize the density range and contrast among S190A negatives. Enhanced black and white enlargements were converted to color by contact printing onto diazo film. A color prediction model related the density values on each spectral band for each category of land use to the spectral properties of the various diazo dyes. The S190A multispectral system proved to be almost as effective as the S190B high resolution camera for inventorying land use. Aggregate error for Level 1 averaged about 12% while Level 2 aggregate error averaged about 25%. The S190A system proved to be much superior to LANDSAT in inventorying land use, primarily because of increased resolution

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information
    corecore