5,953 research outputs found

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    Quantitative Assessment of Robotic Swarm Coverage

    Full text link
    This paper studies a generally applicable, sensitive, and intuitive error metric for the assessment of robotic swarm density controller performance. Inspired by vortex blob numerical methods, it overcomes the shortcomings of a common strategy based on discretization, and unifies other continuous notions of coverage. We present two benchmarks against which to compare the error metric value of a given swarm configuration: non-trivial bounds on the error metric, and the probability density function of the error metric when robot positions are sampled at random from the target swarm distribution. We give rigorous results that this probability density function of the error metric obeys a central limit theorem, allowing for more efficient numerical approximation. For both of these benchmarks, we present supporting theory, computation methodology, examples, and MATLAB implementation code.Comment: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Porto, Portugal, 29--31 July 2018. 11 pages, 4 figure

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference

    Biomimetic Algorithms for Coordinated Motion: Theory and Implementation

    Full text link
    Drawing inspiration from flight behavior in biological settings (e.g. territorial battles in dragonflies, and flocking in starlings), this paper demonstrates two strategies for coverage and flocking. Using earlier theoretical studies on mutual motion camouflage, an appropriate steering control law for area coverage has been implemented in a laboratory test-bed equipped with wheeled mobile robots and a Vicon high speed motion capture system. The same test-bed is also used to demonstrate another strategy (based on local information), termed topological velocity alignment, which serves to make agents move in the same direction. The present work illustrates the applicability of biological inspiration in the design of multi-agent robotic collectives

    Internal agent states : experiments using the swarm leader concept

    Get PDF
    In recent years, an understanding of the operating principles and stability of natural swarms has proven to be a useful tool for the design and control of artificial robotic agents. Many robotic systems, whose design or control principals are inspired by behavioural aspects of real biological systems such as leader-follower relationship, have been developed. We introduced an algorithm which successfully enhances the navigation performance of a swarm of robots using the swarm leader concept. This paper presents some applications based on that work using the simulations and experimental implementation using a swarming behaviour test-bed at the University of Strathclyde. Experimental and simulation results match closely in a way that confirms the efficiency of the algorithm as well as its applicability
    • …
    corecore