100,253 research outputs found

    Region-based license plate detection

    Full text link
    Automatic license plate recognition (ALPR) is one of the most important aspects of applying computer techniques towards intelligent transportation systems. In order to recognize a license plate efficiently, however, the location of the license plate, in most cases, must be detected in the first place. Due to this reason, detecting the accurate location of a license plate from a vehicle image is considered to be the most crucial step of an ALPR system, which greatly affects the recognition rate and speed of the whole system. In this paper, a region-based license plate detection method is proposed. In this method, firstly, mean shift is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. Unlike other existing license plate detection methods, the proposed method focuses on regions, which demonstrates to be more robust to interference characters and more accurate when compared with other methods. © 2006 Elsevier Ltd. All rights reserved

    Multiple License Plate Detection for Complex Background

    Get PDF
    [[abstract]]This paper presents a wavelet transfonn based method for extracting license plates from cluttered images. The proposed system consists of three major stages. First, a wavelet transfonn based method is used for extracting important contrast features as guides to search for desired license plates. Then, finding a reference line in HL subimage plays an important role to locate the desired license plate region roughly. According to the reference line we can decrease the searching region of license plate and speed up the execution time. The last stage of the method is to locate the license plate accurately by license plate adjustment. More importantly, the proposed detection method can locate multiple plates with different orientations in one image. Since the feature extracted is robust to complex backgrounds, the proposed method works well in extracting differently illuminated and oriented license plates. The average accuracy of detection is 92.4%.[[sponsorship]]IEEE Computer Society Technical Committee on Distributed Processing (TCDP); Tamkung University[[conferencetype]]國際[[conferencetkucampus]]淡水校園[[conferencedate]]20050328~20050330[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]臺北縣, 臺

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    An End-to-End License Plate Localization and Recognition System

    Get PDF
    An end-to-end license plate recognition (LPR) system is proposed. It is composed of pre-processing, detection, segmentation and character recognition to find and recognize plates from camera based still images. The system utilizes connected component (CC) properties to quickly extract the license plate region. A novel two-stage CC filtering is utilized to address both shape and spatial relationship information to produce high precision and recall values for detection. Floating peak and valleys (FPV) of projection profiles are used to cut the license plates into individual characters. A turning function based method is proposed to recognize each character quickly and accurately. It is further accelerated using curvature histogram based support vector machine (SVM). The INFTY dataset is used to train the recognition system. And MediaLab license plate dataset is used for testing. The proposed system achieved 89.45% F-measure for detection and 87.33% accuracy for overall recognition rate which is comparable to current state-of-the-art systems

    License Plate Detection based on Genetic Neural Networks, Morphology, and Active Contours

    Get PDF
    This paper describes a new method for License Plate Detection based on Genetic Neural Networks, Morphology, and Active Contours. Given an image is divided into several virtual regions sized 10×10 pixels, applying several performance algorithms within each virtual region, algorithms such as edge detection, histograms, and binary thresholding, etc. These results are used as inputs for a Genetic Neural Network, which provides the initial selection for the probable situation of the license plate. Further refinement is applied using active contours to fit the output tightly to the license plate. With a small and well–chosen subset of images, the system is able to deal with a large variety of images with real–world characteristics obtaining great precision in the detection. The effectiveness for the proposed method is very high (97%). This method will be the first stage of a surveillance system which takes into account not only the actual license plate but also the model of the car to determine if a car should be taken as a threat

    A hierarchical RCNN for vehicle and vehicle license plate detection and recognition

    Get PDF
    Vehicle and vehicle license detection obtained incredible achievements during recent years that are also popularly used in real traffic scenarios, such as intelligent traffic monitoring systems, auto parking systems, and vehicle services. Computer vision attracted much attention in vehicle and vehicle license detection, benefit from image processing and machine learning technologies. However, the existing methods still have some issues with vehicle and vehicle license plate recognition, especially in a complex environment. In this paper, we propose a multivehicle detection and license plate recognition system based on a hierarchical region convolutional neural network (RCNN). Firstly, a higher level of RCNN is employed to extract vehicles from the original images or video frames. Secondly, the regions of the detected vehicles are input to a lower level (smaller) RCNN to detect the license plate. Thirdly, the detected license plate is split into single numbers. Finally, the individual numbers are recognized by an even smaller RCNN. The experiments on the real traffic database validated the proposed method. Compared with the commonly used all-in-one deep learning structure, the proposed hierarchical method deals with the license plate recognition task in multiple levels for sub-tasks, which enables the modification of network size and structure according to the complexity of sub-tasks. Therefore, the computation load is reduced

    BOUNDING BOX METHOD BASED ACCURATE VEHICLE NUMBER DETECTION AND RECOGNITION FOR HIGH SPEED APPLICATIONS

    Get PDF
    License plate detection and recognition is the one of the major aspects of applying the image processing techniques towards intelligent transport systems. Detecting the exact location of the license plate from the vehicle image at very high speed is the one of the most crucial step for vehicle plate detection systems. This paper proposes an algorithm to detect license plate region and edge processing both vertically and horizontally to improve the performance of the systems for high speed applications. Throughout the detection and recognition the original images are detected, filtered both vertically and horizontally, and threshold based on bounding box method. The whole system was tested on more than twenty five cars with various license plates in Indian style at different weather conditions. The overall accuracy rate of success recognition is 93% at sunlight conditions, 72% at cloudy, 71% at shaded weather conditions

    Text Localization and Extraction in Natural Scene Images

    Get PDF
    Content based image analysis methods are receiving more attention in recent time due to increase in use of image capturing devices. Among all contents in images, text data finds wide applications such as license plate reading, mobile text recognition and so on. The Text Information Extraction (TIE) is a process of extraction of text from images which consists of four stages: detection, localization, extraction and recognition. Text detection and localization plays important role in system’s performance. The existing methods for detection and localization, region based and connected component based, have some limitations due difference in size, style, orientation etc. To overcome the limitations, a hybrid approach is proposed to detect and localize text in natural scene images. This approach includes steps: pre-processing connected component analysis, text extraction. DOI: 10.17762/ijritcc2321-8169.15021
    corecore