14 research outputs found

    A Hybrid Chebyshev-ICA Image Fusion Method Based on Regional Saliency

    Get PDF
    An image fusion method that performs robustly for image sets heavily corrupted by noise is presented in this paper. The approach combines the advantages of two state-of-the-art fusion techniques, namely Independent Component Analysis (ICA) and Chebyshev Poly-nomial Analysis (CPA) fusion. Fusion using ICA performs well in transferring the salient features of the input images into the composite output, but its performance deteriorates severely under mild to moderate noise conditions. CPA fusion is robust under severe noise conditions, but eliminates the high frequency information of the images involved. We pro-pose to use ICA fusion within high activity image areas, identified by edges and strong textured surfaces and CPA fusion in low activity areas identified by uniform background regions and weak texture. A binary image map is used for selecting the appropriate method, which is constructed by a standard edge detector followed by morphological operators. The results of the proposed approach are very encouraging as far as joint fusion and denoising is concerned. The works presented may prove beneficial for future image fusion tasks in real world applications such as surveillance, where noise is heavily present

    Signal processing algorithms for enhanced image fusion performance and assessment

    Get PDF
    The dissertation presents several signal processing algorithms for image fusion in noisy multimodal conditions. It introduces a novel image fusion method which performs well for image sets heavily corrupted by noise. As opposed to current image fusion schemes, the method has no requirements for a priori knowledge of the noise component. The image is decomposed with Chebyshev polynomials (CP) being used as basis functions to perform fusion at feature level. The properties of CP, namely fast convergence and smooth approximation, renders it ideal for heuristic and indiscriminate denoising fusion tasks. Quantitative evaluation using objective fusion assessment methods show favourable performance of the proposed scheme compared to previous efforts on image fusion, notably in heavily corrupted images. The approach is further improved by incorporating the advantages of CP with a state-of-the-art fusion technique named independent component analysis (ICA), for joint-fusion processing based on region saliency. Whilst CP fusion is robust under severe noise conditions, it is prone to eliminating high frequency information of the images involved, thereby limiting image sharpness. Fusion using ICA, on the other hand, performs well in transferring edges and other salient features of the input images into the composite output. The combination of both methods, coupled with several mathematical morphological operations in an algorithm fusion framework, is considered a viable solution. Again, according to the quantitative metrics the results of our proposed approach are very encouraging as far as joint fusion and denoising are concerned. Another focus of this dissertation is on a novel metric for image fusion evaluation that is based on texture. The conservation of background textural details is considered important in many fusion applications as they help define the image depth and structure, which may prove crucial in many surveillance and remote sensing applications. Our work aims to evaluate the performance of image fusion algorithms based on their ability to retain textural details from the fusion process. This is done by utilising the gray-level co-occurrence matrix (GLCM) model to extract second-order statistical features for the derivation of an image textural measure, which is then used to replace the edge-based calculations in an objective-based fusion metric. Performance evaluation on established fusion methods verifies that the proposed metric is viable, especially for multimodal scenarios

    Adaptive chebyshev fusion of vegetation imagery based on SVM classifier

    Get PDF
    A novel adaptive image fusion method by using Chebyshev polynomial analysis (CPA), for applications in vegetation satellite imagery, is introduced in this paper. Fusion is a technique that enables the merging of two satellite cameras: panchromatic and multi-spectral, to produce higher quality satellite images to address agricurtural and vegetation issues such as soiling, floods and crop harvesting. Recent studies show Chebyshev polynomials to be effective in image fusion mainly in medium to high noise conditions, as per real-life satellite conditions. However, its application was limited to heuristics. In this research, we have proposed a way to adaptively select the optimal CPA parameters according to user specifications. Support vector machines (SVM) is used as a classifying tool to estimate the noise parameters, from which the appropriate CPA degree is utilised to perform image fusion according to a look-up table. Performance evaluation affirms the approach’s ability in reducing the computational complexity to perform fusion. Overall, adaptive CPA fusion is able to optimize an image fusion system’s resources and processing time. It therefore may be suitably incorporated onto real hardware for use on vegetation satellite imagery

    Novel Approaches for Regional Multifocus Image Fusion

    Get PDF
    Image fusion is a research topic about combining information from multiple images into one fused image. Although a large number of methods have been proposed, many challenges remain in obtaining clearer resulting images with higher quality. This chapter addresses the multifocus image fusion problem about extending the depth of field by fusing several images of the same scene with different focuses. Existing research in multifocus image fusion tends to emphasis on the pixel-level image fusion using transform domain methods. The region-level image fusion methods, especially the ones using new coding techniques, are still limited. In this chapter, we provide an overview of regional multi-focus image fusion, and two different orthogonal matching pursuit-based sparse representation methods are adopted for regional multi-focus image fusion. Experiment results show that the regional image fusion using sparse representation can achieve a comparable even better performance for multifocus image fusion problems

    University of Wollongong Annual Report 1982

    Get PDF

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei

    Get PDF
    corecore