1,274 research outputs found

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    Automated System for Early Breast Cancer Detection in Mammograms

    Get PDF
    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed

    A scalable system for microcalcification cluster automated detection in a distributed mammographic database

    Get PDF
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different datasets of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report and discuss the system performances on different datasets of mammograms and the status of the GRID-enabled CADe analysis.Comment: 6 pages, 4 figures; Proceedings of the IEEE NNS and MIC Conference, October 23-29, 2005, Puerto Ric

    A scalable Computer-Aided Detection system for microcalcification cluster identification in a pan-European distributed database of mammograms

    Full text link
    A computer-aided detection (CADe) system for microcalcification cluster identification in mammograms has been developed in the framework of the EU-founded MammoGrid project. The CADe software is mainly based on wavelet transforms and artificial neural networks. It is able to identify microcalcifications in different kinds of mammograms (i.e. acquired with different machines and settings, digitized with different pitch and bit depth or direct digital ones). The CADe can be remotely run from GRID-connected acquisition and annotation stations, supporting clinicians from geographically distant locations in the interpretation of mammographic data. We report the FROC analyses of the CADe system performances on three different dataset of mammograms, i.e. images of the CALMA INFN-founded database collected in the Italian National screening program, the MIAS database and the so-far collected MammoGrid images. The sensitivity values of 88% at a rate of 2.15 false positive findings per image (FP/im), 88% with 2.18 FP/im and 87% with 5.7 FP/im have been obtained on the CALMA, MIAS and MammoGrid database respectively.Comment: 6 pages, 5 figures; Proceedings of the ITBS 2005, 3rd International Conference on Imaging Technologies in Biomedical Sciences, 25-28 September 2005, Milos Island, Greec
    • …
    corecore