30,493 research outputs found

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    Efficient contour-based shape representation and matching

    Get PDF
    This paper presents an efficient method for calculating the similarity between 2D closed shape contours. The proposed algorithm is invariant to translation, scale change and rotation. It can be used for database retrieval or for detecting regions with a particular shape in video sequences. The proposed algorithm is suitable for real-time applications. In the first stage of the algorithm, an ordered sequence of contour points approximating the shapes is extracted from the input binary images. The contours are translation and scale-size normalized, and small sets of the most likely starting points for both shapes are extracted. In the second stage, the starting points from both shapes are assigned into pairs and rotation alignment is performed. The dissimilarity measure is based on the geometrical distances between corresponding contour points. A fast sub-optimal method for solving the correspondence problem between contour points from two shapes is proposed. The dissimilarity measure is calculated for each pair of starting points. The lowest dissimilarity is taken as the final dissimilarity measure between two shapes. Three different experiments are carried out using the proposed approach: letter recognition using a web camera, our own simulation of Part B of the MPEG-7 core experiment “CE-Shape1” and detection of characters in cartoon video sequences. Results indicate that the proposed dissimilarity measure is aligned with human intuition

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation
    corecore