12 research outputs found

    Adaptive Quantisation in HEVC for Contouring Artefacts Removal in UHD Content

    Get PDF
    Contouring artefacts affect the visual experience of some particular types of compressed Ultra High Definition (UHD) sequences characterised by smoothly textured areas and gradual transitions in the value of the pixels. This paper proposes a technique to adjust the quantisation process at the encoder so that contouring artefacts are avoided. The devised method does not require any change at the decoder side and introduces a negligible coding rate increment (up to 3.4% for the same objective quality). This result compares favourably with the average 11.2% bit-rate penalty introduced by a method where the quantisation step is reduced in contour-prone areas

    High Efficiency Video Coding (HEVC) tools for next generation video content

    Get PDF

    Video compression algorithms for HEVC and beyond

    Get PDF
    PhDDue to the increasing number of new services and devices that allow the creation, distribution and consumption of video content, the amount of video information being transmitted all over the world is constantly growing. Video compression technology is essential to cope with the ever increasing volume of digital video data being distributed in today's networks, as more e cient video compression techniques allow support for higher volumes of video data under the same memory/bandwidth constraints. This is especially relevant with the introduction of new and more immersive video formats associated with signi cantly higher amounts of data. In this thesis, novel techniques for improving the e ciency of current and future video coding technologies are investigated. Several aspects that in uence the way conventional video coding methods work are considered. In particular, the properties and limitations of the Human Visual System are exploited to tune the performance of video encoders towards better subjective quality. Additionally, it is shown how the visibility of speci c types of visual artefacts can be prevented during the video encoding process, in order to avoid subjective quality degradations in the compressed content. Techniques for higher video compression e ciency are also explored, targeting to improve the compression capabilities of state-of-the-art video coding standards. Finally, the application of video coding technologies to practical use-cases is considered. Accurate estimation models are devised to control the encoding time and bit rate associated with compressed video signals, in order to meet speci c encoding time and transmission time restrictions

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) (EP/D032148)GBUnited Kingdo

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    The World We Want to Live In

    Get PDF
    Digitalisation, digital networks, and artificial intelligence are fundamentally changing our lives! We must understand the various developments and assess how they interact and how they affect our regular, analogue lives. What are the consequences of such changes for me personally and for our society? Digital networks and artificial intelligence are seminal innovations that are going to permeate all areas of society and trigger a comprehensive, disruptive structural change that will evoke numerous new advances in research and development in the coming years. Even though there are numerous books on this subject matter, most of them cover only specific aspects of the profound and multifaceted effects of the digital transformation. An overarching assessment is missing. In 2016, the Federation of German Scientists (VDW) has founded a study group to assess the technological impacts of digitalisation holistically. Now we present this compendium to you. We address the interrelations and feedbacks of digital innovation on policy, law, economics, science, and society from various scientific perspectives. Please consider this book as an invitation to contemplate with other people and with us, what kind of world we want to live in
    corecore