17,265 research outputs found

    Segmentation of vectorial image features using shape gradients and information measures

    Get PDF
    International audienceIn this paper, we propose to focus on the segmentation of vectorial features (e.g. vector fields or color intensity) using region-based active contours. We search for a domain that minimizes a criterion based on homogeneity measures of the vectorial features. We choose to evaluate, within each region to be segmented, the average quantity of information carried out by the vectorial features, namely the joint entropy of vector components. We do not make any assumption on the underlying distribution of joint probability density functions of vector components, and so we evaluate the entropy using non parametric probability density functions. A local shape minimizer is then obtained through the evolution of a deformable domain in the direction of the shape gradient. The first contribution of this paper lies in the methodological approach used to differentiate such a criterion. This approach is mainly based on shape optimization tools. The second one is the extension of this method to vectorial data. We apply this segmentation method on color images for the segmentation of color homogeneous regions. We then focus on the segmentation of synthetic vector fields and show interesting results where motion vector fields may be separated using both their length and their direction. Then, optical flow is estimated in real video sequences and segmented using the proposed technique. This leads to promising results for the segmentation of moving video objects

    Geodesic Distance Histogram Feature for Video Segmentation

    Full text link
    This paper proposes a geodesic-distance-based feature that encodes global information for improved video segmentation algorithms. The feature is a joint histogram of intensity and geodesic distances, where the geodesic distances are computed as the shortest paths between superpixels via their boundaries. We also incorporate adaptive voting weights and spatial pyramid configurations to include spatial information into the geodesic histogram feature and show that this further improves results. The feature is generic and can be used as part of various algorithms. In experiments, we test the geodesic histogram feature by incorporating it into two existing video segmentation frameworks. This leads to significantly better performance in 3D video segmentation benchmarks on two datasets

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108

    HeadOn: Real-time Reenactment of Human Portrait Videos

    Get PDF
    We propose HeadOn, the first real-time source-to-target reenactment approach for complete human portrait videos that enables transfer of torso and head motion, face expression, and eye gaze. Given a short RGB-D video of the target actor, we automatically construct a personalized geometry proxy that embeds a parametric head, eye, and kinematic torso model. A novel real-time reenactment algorithm employs this proxy to photo-realistically map the captured motion from the source actor to the target actor. On top of the coarse geometric proxy, we propose a video-based rendering technique that composites the modified target portrait video via view- and pose-dependent texturing, and creates photo-realistic imagery of the target actor under novel torso and head poses, facial expressions, and gaze directions. To this end, we propose a robust tracking of the face and torso of the source actor. We extensively evaluate our approach and show significant improvements in enabling much greater flexibility in creating realistic reenacted output videos.Comment: Video: https://www.youtube.com/watch?v=7Dg49wv2c_g Presented at Siggraph'1

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann
    corecore