1,725 research outputs found

    Inflation in a modified radiative seesaw model

    Full text link
    The existence of the inflationary era in the early Universe seems to be strongly supported by recent CMB observations. However, only a few realistic inflation scenarios which have close relation to particle physics seem to have been known unfortunately. The radiative neutrino mass model with inert doublet dark matter is a promising model for the present experimental issues which cannot be explained within the standard model. In order to make the model include inflation, we extend it by a complex scalar field with a specific potential. This scalar could be closely related to the neutrino mass generation at a TeV scale as well as inflation. We show that the inflation favored by the CMB observations could be realized even if inflaton takes sub-Planck values during inflation.Comment: 20 pages, 3 figure

    Inflation with improved D3-brane potential and the fine tunings associated with the model

    Full text link
    We investigate brane-antibrane inflation in a warped deformed conifold background that includes contributions to the potential arising from imaginary anti-self-dual (IASD) fluxes including the term with irrational scaling dimension discovered recently. We find that the model can give rise to required number of e-foldings; observational constraint on COBE normalization is easily satisfied and low value of the tensor to scalar ratio of perturbations is achieved. We observe that these corrections to the effective potential help in relaxing the severe fine tunings associated with the earlier analysis.Comment: 8 pages, 4 figures; typos corrected, minor clarifications and new refs added, to appear in epj

    The Inflationary Energy Scale

    Full text link
    The energy scale of inflation is of much interest, as it suggests the scale of grand unified physics and also governs whether cosmological events such as topological defect formation can occur after inflation. The COBE results are used to limit the energy scale of inflation at around 60 ee-foldings from the end of inflation. An exact dynamical treatment based on the Hamilton-Jacobi equations is then used to translate this into limits on the energy scale at the end of inflation. General constraints are given, and then tighter constraints based on physically motivated assumptions regarding the allowed forms of density perturbation and gravitational wave spectra. These are also compared with the values of familiar models.Comment: 17 pages (plus three figures, available from the author as hard copies only), standard LaTeX, SUSSEX-AST 93/7-

    TeV scale seesaw from supersymmetric Higgs-lepton inflation and BICEP2

    Get PDF
    We discuss the physics resulting from the supersymmetric Higgs-lepton inflation model and the recent CMB B-mode observation by the BICEP2 experiment. The tensor-to-scalar ratio r=0.20+0.07-0.05 of the primordial fluctuations indicated by the CMB B-mode polarization is consistent with the prediction of this inflationary model for natural parameter values. A salient feature of the model is that it predicts the seesaw mass scale M from the amplitude of the tensor mode fluctuations. It is found that the 68% (95%) confidence level (CL) constraints from the BICEP2 experiment give 927 GeV < M < 1.62 TeV (751 GeV < M < 2.37 TeV) for 50 e-foldings and 391 GeV < M < 795 GeV (355 GeV < M < 1.10 TeV) for 60 e-foldings. In the type I seesaw case, the right-handed neutrinos in this mass range are elusive in collider experiments due to the small mixing angle. In the type III seesaw, in contrast, the heavy leptons will be within the reach of future experiments. We point out that a significant portion of the parameter region corresponding to the 68% CL of the BICEP2 experiment will be covered by the Large Hadron Collider experiments at 14 TeV.Comment: 6 pages, 1 figure. v2: a reference added. v3: typos fixe

    CMB Anisotropies Reveal Quantized Gravity

    Full text link
    A novel primordial spectrum with a dynamical scale of quantum gravity origin is proposed to explain the sharp fall off of the angular power spectra at low multipoles in the COBE and WMAP observations. The spectrum is derived from quantum fluctuations of the scalar curvature in a renormalizable model of induced gravity. This model describes the very early universe by the conformal field fluctuating about an inflationary background with the expansion time constant of order of the Planck mass.Comment: 12 pages, 2 figure

    String Inflation After Planck 2013

    Full text link
    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.Comment: LaTeX, 21 pages plus references; slight modification of the discussion of inflection point inflation, references added and typos correcte

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE
    • …
    corecore