81,216 research outputs found

    Improving Spatial Codification in Semantic Segmentation

    Get PDF
    This paper explores novel approaches for improving the spatial codification for the pooling of local descriptors to solve the semantic segmentation problem. We propose to partition the image into three regions for each object to be described: Figure, Border and Ground. This partition aims at minimizing the influence of the image context on the object description and vice versa by introducing an intermediate zone around the object contour. Furthermore, we also propose a richer visual descriptor of the object by applying a Spatial Pyramid over the Figure region. Two novel Spatial Pyramid configurations are explored: Cartesian-based and crown-based Spatial Pyramids. We test these approaches with state-of-the-art techniques and show that they improve the Figure-Ground based pooling in the Pascal VOC 2011 and 2012 semantic segmentation challenges.Comment: Paper accepted at the IEEE International Conference on Image Processing, ICIP 2015. Quebec City, 27-30 September. Project page: https://imatge.upc.edu/web/publications/improving-spatial-codification-semantic-segmentatio

    CoupleNet: Coupling Global Structure with Local Parts for Object Detection

    Get PDF
    The region-based Convolutional Neural Network (CNN) detectors such as Faster R-CNN or R-FCN have already shown promising results for object detection by combining the region proposal subnetwork and the classification subnetwork together. Although R-FCN has achieved higher detection speed while keeping the detection performance, the global structure information is ignored by the position-sensitive score maps. To fully explore the local and global properties, in this paper, we propose a novel fully convolutional network, named as CoupleNet, to couple the global structure with local parts for object detection. Specifically, the object proposals obtained by the Region Proposal Network (RPN) are fed into the the coupling module which consists of two branches. One branch adopts the position-sensitive RoI (PSRoI) pooling to capture the local part information of the object, while the other employs the RoI pooling to encode the global and context information. Next, we design different coupling strategies and normalization ways to make full use of the complementary advantages between the global and local branches. Extensive experiments demonstrate the effectiveness of our approach. We achieve state-of-the-art results on all three challenging datasets, i.e. a mAP of 82.7% on VOC07, 80.4% on VOC12, and 34.4% on COCO. Codes will be made publicly available.Comment: Accepted by ICCV 201

    Monocular SLAM Supported Object Recognition

    Get PDF
    In this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.Comment: Accepted to appear at Robotics: Science and Systems 2015, Rome, Ital
    corecore