300 research outputs found

    Implementation of Dynamic Virtual Cloud Architecture for Privacy Data Storage

    Get PDF
    Nowadays rapidly developing technologies, cloud computing offers versatile services. However, cloud computing presents a challenge to secure information sharing. Customers can securely share their data with others and remotely store it in the cloud using cloud storage services. In recent times, cloud storage typically represents as the primary method of external data storage. The primary challenge is safeguarding the cloud-based data against attacks. Over the information network, the growth of private or semi-private information has increased. The search techniques have not been addressed by privacy safeguards. As there is no suitable audit system, the validity of the stored data has become in question. In addition, user authentication presents additional difficulties. Hence in order to solve these issues, Design and implementation of dynamic virtual cloud architecture for privacy data storage is presented. In this approach, third-party audits are presented accompanied a new, regenerative public audit methodology. A distributed KDC (Key Distribution Center) is employed to encrypt the data. Documents can be stored on a private server in plain word form, which compromise the protection of privacy. As a result, system security can be improved to make the documents safer and more effective. The main objective of this Virtual Cloud Architecture is to achieve data confidentiality, as well as authenticity.&nbsp

    Secure Data Storage on Cloud through Networking

    Get PDF
    Security, privacy issue and data protection is always one of the major issue which reduces the growth and make slow the speed of rising new technologies in the field of cloud computing. The advent of an advanced model should not negotiate with the required functionalities and capabilities present in the current model. Here to avoid risk and threaten are reduced in the new model the features are improved. In this paper, a survey of the different security risks that pose a threat to the cloud is presented. This paper is a survey more specific to the different security issues that has emanated due to the nature of the service delivery models of a cloud computing system

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed

    Data auditing and security in cloud computing: issues, challenges and future directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discusse

    Data Recovery and Integrity Checking By Proxy In Cloud

    Get PDF
    Cloud is a collection of data centres which provides effective services to cloud clients. Now a day’s users and organizations are forwarding the data to cloud. But problem is repairing cloud data along with integrity checking is challenging issue. Provable information ownership (PDP) and confirmation of retrievability (POR) to discharge the data owner from online weight for check, considered general society auditability in the PDP model interestingly. In any case, their variation convention uncovered the straight blend of tests and in this way gives no information protection ensure.Existing methods only support private auditing means data owner only audit the cloud data and always to stay online for repairing cloud data. In order to overcome this problem introducing public auditing instead of data owner a proxy can repair the corrupted data by using public verifiable authenticator. For cloud data auditing TPA can use the enhanced privacy auditing protocol. This new protocol is introduced to audit the cloud data by TPA. But he can’t know the original data. For security and Integrity checking AES-256 bit as well as SHA-1 Algorithm is used Finally proposed technique is efficient in terms of communication and computation as well as privacy

    A Novel Auditing Scheme And Efficient Data Repairing Process In Multiple Clouds

    Get PDF
    We propose an public auditing system for the recovering code-based distributed storage. To answer the recovery issue of fizzled authenticators in the nonattendance of information proprietors, we show an intermediary, which is advantaged to recover the authenticators, into the anticipated open evaluating framework display. Likewise, we anticipate another open obvious authenticator, which is delivered by several keys and can be recovered utilizing incomplete keys. Accordingly, our plan can absolutely discharge information proprietors from online weight. Furthermore, we randomize the encode coefficients with a pseudorandom assignment to save information protection. TPA convention is introduced to review the cloud information. For consistency checking TPA is introduced without investment of information proprietor. In conclusion future technique is productive regarding correspondence and calculation and also protection

    New directions for remote data integrity checking of cloud storage

    Get PDF
    Cloud storage services allow data owners to outsource their data, and thus reduce their workload and cost in data storage and management. However, most data owners today are still reluctant to outsource their data to the cloud storage providers (CSP), simply because they do not trust the CSPs, and have no confidence that the CSPs will secure their valuable data. This dissertation focuses on Remote Data Checking (RDC), a collection of protocols which can allow a client (data owner) to check the integrity of data outsourced at an untrusted server, and thus to audit whether the server fulfills its contractual obligations. Robustness has not been considered for the dynamic RDCs in the literature. The R-DPDP scheme being designed is the first RDC scheme that provides robustness and, at the same time, supports dynamic data updates, while requiring small, constant, client storage. The main challenge that has to be overcome is to reduce the client-server communication during updates under an adversarial setting. A security analysis for R-DPDP is provided. Single-server RDCs are useful to detect server misbehavior, but do not have provisions to recover damaged data. Thus in practice, they should be extended to a distributed setting, in which the data is stored redundantly at multiple servers. The client can use RDC to check each server and, upon having detected a corrupted server, it can repair this server by retrieving data from healthy servers, so that the reliability level can be maintained. Previously, RDC has been investigated for replication-based and erasure coding-based distributed storage systems. However, RDC has not been investigated for network coding-based distributed storage systems that rely on untrusted servers. RDC-NC is the first RDC scheme for network coding-based distributed storage systems to ensure data remain intact when faced with data corruption, replay, and pollution attacks. Experimental evaluation shows that RDC-NC is inexpensive for both the clients and the servers. The setting considered so far outsources the storage of the data, but the data owner is still heavily involved in the data management process (especially during the repair of damaged data). A new paradigm is proposed, in which the data owner fully outsources both the data storage and the management of the data. In traditional distributed RDC schemes, the repair phase imposes a significant burden on the client, who needs to expend a significant amount of computation and communication, thus, it is very difficult to keep the client lightweight. A new self-repairing concept is developed, in which the servers are responsible to repair the corruption, while the client acts as a lightweight coordinator during repair. To realize this new concept, two novel RDC schemes, RDC-SR and ERDC-SR, are designed for replication-based distributed storage systems, which enable Server-side Repair and minimize the load on the client side. Version control systems (VCS) provide the ability to track and control changes made to the data over time. The changes are usually stored in a VCS repository which, due to its massive size, is often hosted at an untrusted CSP. RDC can be used to address concerns about the untrusted nature of the VCS server by allowing a data owner to periodically check that the server continues to store the data. The RDC-AVCS scheme being designed relies on RDC to ensure all the data versions are retrievable from the untrusted server over time. The RDC-AVCS prototype built on top of Apache SVN only incurs a modest decrease in performance compared to a regular (non-secure) SVN system

    BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    Get PDF
    To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM) is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practical perspectives. We developed BMCloud, a new low repair bandwidth, low maintenance cost cloud storage system, which aims to reduce repair bandwidth and maintenance cost. The system employs both functional repair and exact repair while it inherits advantages from the both. We propose the JUDGE_STYLE algorithm, which can judge whether the system should adopt exact repair or functional repair. We implemented a networked storage system prototype and demonstrated our findings. Compared with existing solutions, BMCloud can be used in engineering to save repair bandwidth and degrade maintenance significantly
    • …
    corecore