2,339 research outputs found

    Concurrent Learning Adaptive Model Predictive Control with Pseudospectral Implementation

    Full text link
    This paper presents a control architecture in which a direct adaptive control technique is used within the model predictive control framework, using the concurrent learning based approach, to compensate for model uncertainties. At each time step, the control sequences and the parameter estimates are both used as the optimization arguments, thereby undermining the need for switching between the learning phase and the control phase, as is the case with hybrid-direct-indirect control architectures. The state derivatives are approximated using pseudospectral methods, which are vastly used for numerical optimal control problems. Theoretical results and numerical simulation examples are used to establish the effectiveness of the architecture.Comment: 21 pages, 13 figure

    Constrained optimal control theory for differential linear repetitive processes

    No full text
    Differential repetitive processes are a distinct class of continuous-discrete two-dimensional linear systems of both systems theoretic and applications interest. These processes complete a series of sweeps termed passes through a set of dynamics defined over a finite duration known as the pass length, and once the end is reached the process is reset to its starting position before the next pass begins. Moreover the output or pass profile produced on each pass explicitly contributes to the dynamics of the next one. Applications areas include iterative learning control and iterative solution algorithms, for classes of dynamic nonlinear optimal control problems based on the maximum principle, and the modeling of numerous industrial processes such as metal rolling, long-wall cutting, etc. In this paper we develop substantial new results on optimal control of these processes in the presence of constraints where the cost function and constraints are motivated by practical application of iterative learning control to robotic manipulators and other electromechanical systems. The analysis is based on generalizing the well-known maximum and Ï”\epsilon-maximum principles to the

    Data-driven discovery of the heat equation in an induction machine via sparse regression

    Get PDF
    Discovery of natural laws through input-output data analysis has been of considerable interest during the past decade. Various approach among which the increasingly growing body of sparsity-based algorithms have been recently proposed for the purpose of free-form system identification. There has however been limited discussion on the performance of these approaches when applied on experimental datasets. The aim of this paper is to study the capability of this technique for identifying the heat equation as the natural law of heat distribution from experimental data, obtained using a Totally-Enclosed-Fan-Cooled (TEFC) induction machine, with and without active cooling. The results confirm the usefulness of the algorithm as a method to identify the underlying natural law in a physical system in the form of a Partial Differential Equation (PDE)

    Data-Driven Estimation in Equilibrium Using Inverse Optimization

    Get PDF
    Equilibrium modeling is common in a variety of fields such as game theory and transportation science. The inputs for these models, however, are often difficult to estimate, while their outputs, i.e., the equilibria they are meant to describe, are often directly observable. By combining ideas from inverse optimization with the theory of variational inequalities, we develop an efficient, data-driven technique for estimating the parameters of these models from observed equilibria. We use this technique to estimate the utility functions of players in a game from their observed actions and to estimate the congestion function on a road network from traffic count data. A distinguishing feature of our approach is that it supports both parametric and \emph{nonparametric} estimation by leveraging ideas from statistical learning (kernel methods and regularization operators). In computational experiments involving Nash and Wardrop equilibria in a nonparametric setting, we find that a) we effectively estimate the unknown demand or congestion function, respectively, and b) our proposed regularization technique substantially improves the out-of-sample performance of our estimators.Comment: 36 pages, 5 figures Additional theorems for generalization guarantees and statistical analysis adde

    Parameterized Wasserstein Hamiltonian Flow

    Full text link
    In this work, we propose a numerical method to compute the Wasserstein Hamiltonian flow (WHF), which is a Hamiltonian system on the probability density manifold. Many well-known PDE systems can be reformulated as WHFs. We use parameterized function as push-forward map to characterize the solution of WHF, and convert the PDE to a finite-dimensional ODE system, which is a Hamiltonian system in the phase space of the parameter manifold. We establish error analysis results for the continuous time approximation scheme in Wasserstein metric. For the numerical implementation, we use neural networks as push-forward maps. We apply an effective symplectic scheme to solve the derived Hamiltonian ODE system so that the method preserves some important quantities such as total energy. The computation is done by fully deterministic symplectic integrator without any neural network training. Thus, our method does not involve direct optimization over network parameters and hence can avoid the error introduced by stochastic gradient descent (SGD) methods, which is usually hard to quantify and measure. The proposed algorithm is a sampling-based approach that scales well to higher dimensional problems. In addition, the method also provides an alternative connection between the Lagrangian and Eulerian perspectives of the original WHF through the parameterized ODE dynamics.Comment: We welcome any comments and suggestion
    • 

    corecore