59 research outputs found

    Reflex based walking pattern adaptation for biped robots

    Get PDF
    Employing robots to replace humans in heavy and dangerous tasks is an important research area. Biped robots have advantages in obstacle avoidance and are therefore suitable to work in the human environment in such tasks. However, their control is a very difficult problem because of their nonlinear and unstable nature. Even very small disturbances can lead to instability. Disturbances can vary from slippery ground surfaces to collisions and unexpected contact with the environment to variations in the payload. For dynamically stable robots (walking on two or less feet), constraints on timing and foot placement increase the difficulty of designing controllers that can anticipate changes in the payload or react to errors. This thesis demonstrates the effectiveness of preprogrammed high-level responses to locomotion in a complex dynamic environment. A suite of responses allows a simulated, three dimensional, bipedal robot to recover from falling down due to a sudden change in the payload. Many environment contact errors would be avoided if the control system can respond fast to the errors that have already taken place and adapt the biped locomotion. In the case of the biped robot considered in this work, the controller might have less than a few tenths of a second in which to choose or plan an appropriate recovery. In this thesis reflexes are defined as responses with no explicit modeling and limited sensing. That is the robot can detect the payload change and makes no attempt to estimate the properties of the load to calculate a corresponding recovery plan. These reflexes are defined at high level because they involve changes of the biped body configuration and trajectory. Sensing elements are used just to detect the error and trigger the reflex. Explicit dynamic modeling of the biped robot is complicated and the controller cannot use it to compute precise and appropriate reactions. In addition, accurate and precise information on load addition is not available to the controller. The method presented changes the walk trajectory and shifts the center of gravity to keep the balance of the walk. Thereafter, the original trajectory is brought back by a smooth trajectory interpolation function. The reflex-adaptation technique considered is tested for a variety of payloads at different loading times. The method shows a good functionality by recovering the biped and allowing stable and balanced original walking pattern. The approach is successful and is a candidate for real applications

    Footstep Adjustment for Biped Push Recovery on Slippery Surfaces

    Full text link
    Despite extensive studies on motion stabilization of bipeds, they still suffer from the lack of disturbance coping capability on slippery surfaces. In this paper, a novel controller for stabilizing a bipedal motion in its sagittal plane is developed with regard to the surface friction limitations. By taking into account the physical limitation of the surface in the stabilization trend, a more advanced level of reliability is achieved that provides higher functionalities such as push recovery on low-friction surfaces and prevents the stabilizer from overreacting. The discrete event-based strategy consists of modifying the step length and time period at the beginning of each footstep in order to reestablish stability necessary conditions while taking into account the surface friction limitation as a constraint to prevent slippage. Adjusting footsteps to prevent slippage in confronting external disturbances is perceived as a novel strategy for keeping stability, quite similar to human reaction. The developed methodology consists of rough closed-form solutions utilizing elementary math operations for obtaining the control inputs, allowing to reach a balance between convergence and computational cost, which is quite suitable for real-time operations even with modest computational hardware. Several numerical simulations, including push recovery and switching between different gates on low-friction surfaces, are performed to demonstrate the effectiveness of the proposed controller. In correlation with human-gait experience, the results also reveal some physical aspects favoring stability and the fact of switching between gaits to reduce the risk of falling in confronting different conditions.Comment: for associated simulation video, see https://youtu.be/BWzUgHGdl3

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Intelligent approaches in locomotion - a review

    Get PDF

    Humanoid robot simulator: a realistic dynamics approach

    Get PDF
    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the suggested accurate simulator allows to accomplish this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback and allows the user to test any control strategy without damaging the real robot in the early stages of the development. The proposed simulator also captures some characteristics of the environment that are important and allows to test controllers without access to the real hardware. Experimental results are shown that validate this approach

    From Knowing to Doing: Learning Diverse Motor Skills through Instruction Learning

    Full text link
    Recent years have witnessed many successful trials in the robot learning field. For contact-rich robotic tasks, it is challenging to learn coordinated motor skills by reinforcement learning. Imitation learning solves this problem by using a mimic reward to encourage the robot to track a given reference trajectory. However, imitation learning is not so efficient and may constrain the learned motion. In this paper, we propose instruction learning, which is inspired by the human learning process and is highly efficient, flexible, and versatile for robot motion learning. Instead of using a reference signal in the reward, instruction learning applies a reference signal directly as a feedforward action, and it is combined with a feedback action learned by reinforcement learning to control the robot. Besides, we propose the action bounding technique and remove the mimic reward, which is shown to be crucial for efficient and flexible learning. We compare the performance of instruction learning with imitation learning, indicating that instruction learning can greatly speed up the training process and guarantee learning the desired motion correctly. The effectiveness of instruction learning is validated through a bunch of motion learning examples for a biped robot and a quadruped robot, where skills can be learned typically within several million steps. Besides, we also conduct sim-to-real transfer and online learning experiments on a real quadruped robot. Instruction learning has shown great merits and potential, making it a promising alternative for imitation learning

    Realistic behaviour simulation of a humanoid robot

    Get PDF
    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the proposed accurate simulator allows to fulfil this goal. The simulator is based on the Open Dynamics Engine and GLScene graphics library, providing instant visual feedback. User is able to test any control strategy without bringing damage to the real robot in the early stages of the development. The proposed simulator also captures some characteristics of the environment that are important and allows to test controllers without access to the real hardware. Experimental and simulator results are presented in order to validate the proposed simulator

    Experimental Estimation of Slipping in the Supporting Point of a Biped Robot

    Get PDF
    When developing a gait cycle on a low-friction surface, a biped robot eventually tends to slip. In general, it is commonto overcome this problem by means of either slow movements or physical adaptations of the robot at the contact pointwith the walking surface in order to increase the frictional characteristics. In the case of slipping, several types ofsensors have been used to identify the relative displacement at the contact point of the supporting leg with the walkingsurface for control purposes. This work is focused on the experimental implementation of a low-cost force sensor as ameasurement system of the slipping phenomenon. It is shown how, supported on a suitable change of coordinates,the force measurement at the contact point is used to obtain the total displacement at the supporting point due to thelow-friction conditions. This is an important issue when an accurate Cartesian task is required
    • …
    corecore