54,121 research outputs found

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Full-Duplex Systems Using Multi-Reconfigurable Antennas

    Full text link
    Full-duplex systems are expected to achieve 100% rate improvement over half-duplex systems if the self-interference signal can be significantly mitigated. In this paper, we propose the first full-duplex system utilizing Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to half-duplex systems. MRA is a dynamically reconfigurable antenna structure, that is capable of changing its properties according to certain input configurations. A comprehensive experimental analysis is conducted to characterize the system performance in typical indoor environments. The experiments are performed using a fabricated MRA that has 4096 configurable radiation patterns. The achieved MRA-based passive self-interference suppression is investigated, with detailed analysis for the MRA training overhead. In addition, a heuristic-based approach is proposed to reduce the MRA training overhead. The results show that at 1% training overhead, a total of 95dB self-interference cancellation is achieved in typical indoor environments. The 95dB self-interference cancellation is experimentally shown to be sufficient for 90% full-duplex rate improvement compared to half-duplex systems.Comment: Submitted to IEEE Transactions on Wireless Communication

    System analysis and integration studies for a 15-micron horizon radiance measurement experiment

    Get PDF
    Systems analysis and integration studies for 15-micron horizon radiance measurement experimen

    Chapter 5: Evaluation

    Get PDF
    The OTiS (Online Teaching in Scotland) programme, run by the now defunct Scotcit programme, ran an International e-Workshop on Developing Online Tutoring Skills which was held between 8–12 May 2000. It was organised by Heriot–Watt University, Edinburgh and The Robert Gordon University, Aberdeen, UK. Out of this workshop came the seminal Online Tutoring E-Book, a generic primer on e-learning pedagogy and methodology, full of practical implementation guidelines. Although the Scotcit programme ended some years ago, the E-Book has been copied to the SONET site as a series of PDF files, which are now available via the ALT Open Access Repository. The editor, Carol Higgison, is currently working in e-learning at the University of Bradford (see her staff profile) and is the Chair of the Association for Learning Technology (ALT)

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Diffractive X-ray Telescopes

    Get PDF
    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super-massive black holes in the center of active galaxies What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.Comment: 46 pages, 15 figures, invited review paper to be published in a special issue on "X-Ray Focusing: Techniques and Applications" of the online journal "X-Ray Optics & Instrumentation
    • …
    corecore