20,939 research outputs found

    Multipath and interference errors reduction in gps using antenna arrays

    Get PDF
    The Global Positioning System (GPS) is a worldwide satellite based positioning system that provides any user with tridimensional position, speed and time information. The measured pseudorange is affected by the multipath propagation, which probably is the major source of errors for high precision systems. After a presentation of the GPS and the basic techniques employed to perform pseudorange measurements, the influence of the multipath components on the pseudorange measurement is explained. Like every system the GPS is also exposed to the errors that can be caused by the interferences, and a lot of civil applications need robust receivers to interferences for reasons of safety. In this paper some signal array processing techniques for reducing the code measurement errors due to the multipath propagation and the interferences are presented. Firstly, a non-adaptive beamforming is used. Secondly, a variant of the MUSIC and the maximum likelihood estimator can be used to estimate the DOA of the reflections and the interferences, and then a weight vector that removes these signals is calculated. In the third place, a beamforming with temporal reference is presented; the reference is not the GPS signal itself, but the output of a matched filter to the code. An interesting feature of the proposed techniques is that they can be applied to an array of arbitrary geometry.Peer ReviewedPostprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Look, no Beacons! Optimal All-in-One EchoSLAM

    Get PDF
    We study the problem of simultaneously reconstructing a polygonal room and a trajectory of a device equipped with a (nearly) collocated omnidirectional source and receiver. The device measures arrival times of echoes of pulses emitted by the source and picked up by the receiver. No prior knowledge about the device's trajectory is required. Most existing approaches addressing this problem assume multiple sources or receivers, or they assume that some of these are static, serving as beacons. Unlike earlier approaches, we take into account the measurement noise and various constraints on the geometry by formulating the solution as a minimizer of a cost function similar to \emph{stress} in multidimensional scaling. We study uniqueness of the reconstruction from first-order echoes, and we show that in addition to the usual invariance to rigid motions, new ambiguities arise for important classes of rooms and trajectories. We support our theoretical developments with a number of numerical experiments.Comment: 5 pages, 6 figures, submitted to Asilomar Conference on Signals, Systems, and Computers Websit

    TriG - A GNSS Precise Orbit and Radio Occultation Space Receiver

    Get PDF
    The GPS radio occultation (RO) technique [1] produces measurements in the ionosphere and neutral atmosphere [2] that contribute to monitoring space weather and climate change; and improving operational weather prediction. The high accuracy of RO soundings, traceable to SI standards, makes them ideal climate benchmark observations. For weather applications, RO observations improve the accuracy of weather forecasts by providing temperature and moisture profiles of sub-km vertical resolution, over land and ocean and in the presence of clouds. JPL is currently flying a handful of RO instruments [3] on various satellites in Low Earth Orbit (LEO). Although these receivers have served to pioneer occultation measurements, various advances in technology and understanding of the RO technique along with availability of new signals from GPS and other GNSS satellites allow us to design an improved next generation space-based Precise Orbit Determination (POD) and RO receiver, the TriG receiver. The paper describes the architecture and implementation of the JPL TriG receiver as well as results obtained with a prototype receiver demonstrating key technologies necessary for a next-generation space science receiver

    Sea state monitoring using coastal GNSS-R

    Full text link
    We report on a coastal experiment to study GPS L1 reflections. The campaign was carried out at the Barcelona Port breaker and dedicated to the development of sea-state retrieval algorithms. An experimental system built for this purpose collected and processed GPS data to automatically generate a times series of the interferometric complex field (ICF). The ICF was analyzed off line and compared to a simple developed model that relates ICF coherence time to the ratio of significant wave height (SWH) and mean wave period (MWP). The analysis using this model showed good consistency between the ICF coherence time and nearby oceanographic buoy data. Based on this result, preliminary conclusions are drawn on the potential of coastal GNSS-R for sea state monitoring using semi-empirical modeling to relate GNSS-R ICF coherence time to SWH.Comment: All Starlab authors have contributed significantly; the Starlab author list has been ordered randomly. Submitted to GR
    corecore