108,988 research outputs found

    Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

    Full text link
    By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba0.5_{0.5}Sr1.5_{1.5}Mg2_2Fe12_{12}O22_{22}. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase.Comment: 9 figure

    Assembly, Structure, and Reactivity of Cu\u3csub\u3e4\u3c/sub\u3eS and Cu\u3csub\u3e3\u3c/sub\u3eS Models for the Nitrous Oxide Reductase Active Site, Cu\u3csub\u3eZ\u3c/sub\u3e*

    Get PDF
    Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the CuZ* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [CuI4(μ4-S)] cluster with N–H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N–H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [CuI3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the CuZ* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [CuI4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI4(μ4-S)] cluster reacted with N3–, a linear triatomic substrate isoelectronic to N2O, in preference to NO2–, a bent triatomic. This [CuI4(μ4-S)] cluster also bound I–, a known inhibitor of CuZ*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I– inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme

    Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant

    Get PDF
    Triethyloxonium hexachloroantimonate [Et3O+SbCl6-] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH+•, SbCl6-] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et3O+SbCl6-] and the pure Lewis acid oxidant SbCl5 is based on a prior ethyl transfer from oxygen to chlorine within the ion pair

    Coordination Chemistry of Perhalogenated Cyclopentadienes and Alkynes. 17. Reaction of Dichloroethyne With Platinum(0) Phosphine Complexes: Formation of a .pi.-Complex, Isomerization to .beta.-Chloroethynyl Complexes, and Syntheses of Diplatinioethyne Derivatives. Molecular Structures of (Ph3P)2Pt(.eta.2-ClC.tplbond.CCl) and Cl(Ph3P)2PtC.tplbond.CPt(PPh3)2Cl

    Get PDF
    Dichloroethyne ClCECCl reacts with Pt(PPh3)2(C2H4) or Pt(PPh& to give the a-complex Pt(PPh3)2(+21C=CC1) (l),w hich can be isomerized by prolonged refluxing in toluene to trans- (Ph3P)zC1Pt-C==CC1 (2). 2 easily undergoes exchange reactions with alkylphosphines and with halide anions to yield trans-(R3P)2ClPt-C=CCl (R = Et (3)) Bu (4)) and trans-(Ph3P)z- (X)Pt-C=CCl (X = F (5a), Br (5b), I (5c)), respectively. The alkylphosphine complexes 3 and 4 can also be obtained by reaction of Pt(PR3)4 (R = Et, “Bu) with ClCECCl or from 1 and the corresponding phosphine. When Pt(PPh&(CzH4) is added to a solution of 3, a dinuclear complex 6 is formed, in which the C=C-Cl group acts as a a,a-bridging ligand. Upon standing, oxidative addition of the remaining C-C1 bond occurs and the p-ethynediyl complex trans- C1(R3P)2Pt-C=C-Pt(PPh3)2C1-Cis (R = Et (7a)) can be obtained. The corresponding p-ethynediyl complex 7b (R = Ph) is formed directly from 2 and Pt(PPh&(CzH4). 7b isomerizes upon heating in toluene to the symmetrical all-trans isomer 8. The molecular structures of 1 and 8 were determined by X-ray diffraction (1: C ~ ~ H ~ ~ C ~ Z P ~ Pa ~=C 10H.3Z11C(3~) AZ,, b = 10.392(4) A, c = 33.675(16) A, P = 90.17(3)’, monoclinic, P21/n, 2 = 4. 8: C74H&1zP4Ptz9 a = 12.938(2) A, b = 19.964(3) A, c = 24.844(3) A, P = 96.14(1)’, monoclinic, C2/c, 2 = 4)

    Orbital momentum Hall effect in p-doped graphane

    Get PDF
    It is shown that an electric field applied to p-doped graphane generates a dissipationless orbital momentum Hall current. In the clean limit the corresponding Hall conductivity is independent of the concentration of holes. The Hall effect is related to the 2π2\pi-Berry phase accumulated when heavy and light holes are transported around the degeneracy point in the center of the Brillouin zone. This also leads to the orbital momentum edge currents in the equilibrium state, and to the accumulation of the orbital momentum at the edges when the system is driven out of equilibrium.Comment: RevTeX 4, 4 pages, 2 figures, final versio

    Angle-deformations in Coxeter groups

    Full text link
    The isomorphism problem for Coxeter groups has been reduced to its 'reflection preserving version' by B. Howlett and the second author. Thus, in order to solve it, it suffices to determine for a given Coxeter system (W,R) all Coxeter generating sets S of W which are contained in R^W, the set of reflections of (W,R). In this paper, we provide a further reduction: it suffices to determine all Coxeter generating sets S in R^W which are sharp-angled with respect to R.Comment: 23 pages, 6 figures, submitted to AG

    Reversible H_2 Addition across a Nickel−Borane Unit as a Promising Strategy for Catalysis

    Get PDF
    We report the synthesis and characterization of a series of nickel complexes of the chelating diphosphine-borane ligands ArB(o-Ph_2PC_6H_4)_2 ([^(Ar)DPB^(Ph)]; Ar = Ph, Mes). The [^(Ar)DPB^(Ph)] framework supports pseudo-tetrahedral nickel complexes featuring η^2-B,C coordination from the ligand backbone. For the B-phenyl derivative, the THF adduct [^(Ph)DPB^(Ph)]Ni(THF) has been characterized by X-ray diffraction and features a very short interaction between nickel and the η^2-B,C ligand. For the B-mesityl derivative, the reduced nickel complex [^(Mes)DPB^(Ph)]Ni is isolated as a pseudo-three-coordinate “naked” species that undergoes reversible, nearly thermoneutral oxidative addition of dihydrogen to give a borohydrido-hydride complex of nickel(II) which has been characterized in solution by multinuclear NMR. Furthermore, [^(Mes)DPB^(Ph)]Ni is an efficient catalyst for the hydrogenation of olefin substrates under mild conditions
    corecore