52 research outputs found

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Lab experiences for teaching undergraduate dynamics

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.Includes bibliographical references (p. 443-466).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab modular experiments that illustrate the dynamics of linear time-invariant (LTI) systems and (2) a two wheeled mobile inverted pendulum. The ActivLab equipment has been designed as shareware, and plans for it are available on the web. The inverted pendulum robot developed here is largely inspired by the iBOT and Segway transportation devices invented by Dean Kamen.by Katherine A. Lilienkamp.S.M

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: • 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. • 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. • 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    Three dimensional touch and vision for the micro-world

    Get PDF
    The ability to observe at tiny length scales has enabled key advances across the physical and life sciences. Much of what we know about the structure of cells and tissues comes from experiments on the micron length scale, enabled by new microscopy techniques. Modern manufacturing is increasingly concerned with materials that are structured on the nanometre scale, and devices which have ever-smaller features. Manipulating and measuring microscopic objects is a problem common to fields as diverse as microfabrication and cell biology, and it is these challenges that my doctoral studies have addressed. Tiny sizes mean tiny forces; so small that the light from a laser can be used to propel objects. Optical tweezers, a technique pioneered some two and a half decades ago, exploit light’s momentum to trap and manipulate objects. Now an established tool, single particles can be trapped and tracked to measure forces on a molecular scale, and this work is responsible for much of our current knowledge of motor proteins. This thesis describes advances in the holographic technology used to control multiple optical traps (and hence many trapped particles), and improved methods for monitoring the positions and forces involved. The speed with which multiple holographic optical traps can be moved has traditionally been limited by the time taken to calculate holograms, but by using consumer graphics cards and high speed Spatial Light Modulators (SLMs) I have implemented holographic systems fast enough to react to the Brownian motion of trapped particles. Brownian motion can, to some extent, be suppressed by this approach, and it also allows the trap's stiffness to be engineered to balance sensitivity against tight constraint of position. Feedback control using an SLM, rather than the other beam steering technologies that have been employed, is able to react to motion in three dimensions. This requires 3D position measurement, which is provided by the stereo microscopy technique described in Chapter 2. By illuminating and viewing the sample from two different angles it is possible to reconstruct the depth of objects. This is accomplished through a single high numerical aperture microscope objective, the same lens used to focus the trapping laser. In conjunction with a fast CMOS camera, it is possible to track particles with an accuracy of 2-3nm at several thousand frames per second. This allows measurement of forces and displacements within the control loop, that can be fed back to influence the position of the optical traps. This force information can also be relayed to the operator using a force-feedback joystick as detailed in Chapter 7. Interface design is an important part of making technology accessible to scientists from other disciplines; to this end I have also developed a multi-touch tablet application to control optical tweezers. By creating simple, reliable systems and coupling them to an intuitive interface, I have endeavoured to produce developments which are of use to the non specialist as well as to experts in optical tweezers-a number of which are now available commercially (Section 8.7). These technologies form the basis of a toolkit for working with multi-part probes in optical tweezers, and they should bear fruit in the coming years as a new form of scanning-probe microscopy emerges

    Proceedings of the 9th international conference on disability, virtual reality and associated technologies (ICDVRAT 2012)

    Get PDF
    The proceedings of the conferenc

    Design and semantics of form and movement : DeSForM 2006

    Get PDF

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Design and semantics of form and movement : DeSForM 2006

    Get PDF

    Persuasive by design: a model and toolkit for designing evidence-based interventions

    Get PDF
    • …
    corecore