1,487 research outputs found

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports

    Complexity revealed in the greening of the Arctic

    Get PDF
    As the Arctic warms, vegetation is responding, and satellite measures indicate widespread greening at high latitudes. This 'greening of the Arctic' is among the world’s most important large-scale ecological responses to global climate change. However, a consensus is emerging that the underlying causes and future dynamics of so-called Arctic greening and browning trends are more complex, variable and inherently scale-dependent than previously thought. Here we summarize the complexities of observing and interpreting high-latitude greening to identify priorities for future research. Incorporating satellite and proximal remote sensing with in-situ data, while accounting for uncertainties and scale issues, will advance the study of past, present and future Arctic vegetation change

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Serpentine (Floating) Ice Channels and their Interaction with Riverbed Permafrost in the Lena River Delta, Russia

    Get PDF
    Arctic deltas and their river channels are characterized by three components of the cryosphere: snow, river ice, and permafrost, making them especially sensitive to ongoing climate change. Thinning river ice and rising river water temperatures may affect the thermal state of permafrost beneath the riverbed, with consequences for delta hydrology, erosion, and sediment transport. In this study, we use optical and radar remote sensing to map ice frozen to the riverbed (bedfast ice) vs. ice, resting on top of the unfrozen water layer (floating or so-called serpentine ice) within the Arctic’s largest delta, the Lena River Delta. The optical data is used to differentiate elevated floating ice from bedfast ice, which is flooded ice during the spring melt, while radar data is used to differentiate floating from bedfast ice during the winter months. We use numerical modeling and geophysical field surveys to investigate the temperature field and sediment properties beneath the riverbed. Our results show that the serpentine ice identified with both types of remote sensing spatially coincides with the location of thawed riverbed sediment observed with in situ geoelectrical measurements and as simulated with the thermal model. Besides insight into sub-river thermal properties, our study shows the potential of remote sensing for identifying river channels with active sub-ice flow during winter vs. channels, presumably disconnected for winter water flow. Furthermore, our results provide viable information for the summer navigation for shallow-draught vessels

    Retrieval of aerosol optical thickness over snow and ice surfaces in the Arctic using Advanced Along Track Scanning Radiometer

    Get PDF
    Aerosols in the Arctic cause radiative forcing and a variety of climatic feedbacks, which affect climate of both local and global scales. In order to assess the state of the Arctic climate, information on the aerosol type and amount is needed. Harsh conditions and remoteness of the Arctic region result in very few ground based measurements of aerosol optical thickness. Remote sensing has the potential to provide the necessary temporal and spatial coverage. A non-trivial task of aerosol retrieval over a very bright surface is being solved within the thesis; the developed retrieval consists of cloud screening over snow and two types of aerosol retrieval over snow - in the visible and infrared spectral regions. A number of validation and case studies has been performed to assess the quality of the retrieval. The developed algorithm applies to the data of Advanced Along Track Scanning Radiometer and produces maps of aerosol optical thickness over snow and ice

    Drivers of permafrost degradation along the Inuvik to Tuktoyaktuk Highway (ITH)

    Get PDF
    Infrastructure construction on permafrost is challenging. Not only are northern regions undergoing a faster and more intense global warming than the rest of the world, inducing thawing of the permafrost at a worldwide scale. In addition, linear infrastructures such as gravel highways, built on embankments to protect the underlying permafrost, change environmental conditions in various ways, enhancing permafrost degradation. This work aims to utilize remote sensing data and explore the physical parameters that drive permafrost degradation in the regions adjacent to the Inuvik to Tuktoyaktuk Highway (ITH) in Northwest Territories, Canada. Within the work, snow accumulation along the embankment toe, vegetation moisture increase, surface water increase in poorly drained areas, earlier snowmelt and vegetation increase along the road are defined as factors that (I) enhance permafrost degradation and (II) are observable using remote sensing techniques. The analysis is conducted using cloud computing services, open-source software packages, and primarily freely available datasets. Snow accumulation conditions are derived using Digital Elevation Models (DEM) as baseline data. The cardinal direction of the road and the predominating wind direction significantly impact the snow accumulation. Moreover, the results indicate that the enhanced snow accumulation generally reaches further distances from the road than previous studies suggest. The impact from the road on vegetation moisture and vegetation conditions, indicated by the Normalized Difference Moisture Index (NDMI) and the Normalized Difference Vegetation Index (NDVI), respectively, demonstrated significant decreases within the first 25 m from the road edge. This is in line with previous studies. However, whether the observed effect reflects the field conditions or if the spectral signal is affected by other factors like dust is critically discussed. Furthermore, my study revealed that by normalizing the median NDMI and NDVI values on an undisturbed reference area, an additional effect is observed reaching up to 200 m from the road. The analysis of the NIR band indicates that the downstream side became wetter throughout the years compared to the upstream side. The snowmelt pattern indicated by the Normalized Difference Snow Index (NDSI), derived from Landsat images, shows that the areas next to the road are snow-free earlier in spring than the areas further away. The result indicates that the road affects the snowmelt up to 600 m from the road. The findings of this work highlight the importance of future research into the impact of dust on satellite-derived indices. Furthermore, the findings contribute to a better understanding of the spatial scale of altered permafrost drivers following the construction of the ITH

    Geostatistical and statistical classification of sea-ice properties and provinces from SAR data

    Get PDF
    Recent drastic reductions in the Arctic sea-ice cover have raised an interest in understanding the role of sea ice in the global system as well as pointed out a need to understand the physical processes that lead to such changes. Satellite remote-sensing data provide important information about remote ice areas, and Synthetic Aperture Radar (SAR) data have the advantages of penetration of the omnipresent cloud cover and of high spatial resolution. A challenge addressed in this paper is how to extract information on sea-ice types and sea-ice processes from SAR data. We introduce, validate and apply geostatistical and statistical approaches to automated classification of sea ice from SAR data, to be used as individual tools for mapping sea-ice properties and provinces or in combination. A key concept of the geostatistical classification method is the analysis of spatial surface structures and their anisotropies, more generally, of spatial surface roughness, at variable, intermediate-sized scales. The geostatistical approach utilizes vario parameters extracted from directional vario functions, the parameters can be mapped or combined into feature vectors for classification. The method is flexible with respect to window sizes and parameter types and detects anisotropies. In two applications to RADARSAT and ERS-2 SAR data from the area near Point Barrow, Alaska, it is demonstrated that vario-parameter maps may be utilized to distinguish regions of different sea-ice characteristics in the Beaufort Sea, the Chukchi Sea and in Elson Lagoon. In a third and a fourth case study the analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification. Field measurements and high-resolution aerial observations serve as basis for validation of the geostatistical-statistical classification methods. A combination of supervised classification and vario-parameter mapping yields best results, correctly identifying several sea-ice provinces in the shore-fast ice and the pack ice. Notably, sea ice does not have to be static to be classifiable with respect to spatial structures. In consequence, the geostatistical-statistical classification may be applied to detect changes in ice dynamics, kinematics or environmental changes, such as increased melt ponding, increased snowfall or changes in the equilibrium line

    Recent (1986-2006) Vegetation-Specific NDVI Trends in Northern Canada from Satellite Data

    Get PDF
    Recent northern vegetation changes caused by climate warming have been well documented, using experimental plot warming to examine vegetation-specific changes and satellite image data to examine overall trends. Previous remote sensing efforts have employed the Normalized Difference Vegetation Index (NDVI) from AVHRR, whose 1 km to 8 km pixel size is too large for examination of broad scale vegetation-specific responses because of mixing within the pixel footprint. In this paper, we reconcile differences between field- and remote sensing-based approaches by using both medium-resolution (30 m) and coarse resolution (1 km) data to study 20 years of vegetation-specific responses to northern climate warming (1986 to 2006). Trends are compared among vegetation communities from two separate Landsat classifications in Canada’s eastern and western forest-tundra transition zone, as well as a 1 km AVHRR database recently developed over Canada. A comparison of absolute trends among mapped vegetation communities revealed lichen-dominated communities consistently exhibiting lower trends than those dominated by vascular plants, with both exhibiting increasing NDVI. Our results and those obtained from experimental warming suggest that the magnitude difference in NDVI increase between lichen and vascular vegetation is related to increasing vigor and biomass of vascular vegetation, in contrast to physiological impairment of lichen due to the short-term secondary effect of temperature on moisture. In the longer term, succession from lichen to vascular is likely responsible for the small observed NDVI increase over lichen-dominated regions. The fact that both Landsat and AVHRR exhibited similar relative vegetation-specific trends in NDVI suggests that this phenomenon may be widespread in the North.CCes derniers temps, les changements sur la vĂ©gĂ©tation dans le Nord causĂ©s par le rĂ©chauffement climatique ont Ă©tĂ© bien documentĂ©s grĂące Ă  une parcelle expĂ©rimentale faisant l’objet d’un rĂ©chauffement qui permet d’examiner les changements propres Ă  la vĂ©gĂ©tation, ainsi que grĂące Ă  des donnĂ©es et images obtenues par satellite permettant d’examiner les tendances gĂ©nĂ©rales. Les travaux de tĂ©lĂ©dĂ©tection antĂ©rieurs recouraient Ă  l’indice d’activitĂ© vĂ©gĂ©tale obtenu Ă  partir d’un radiomĂštre perfectionnĂ© Ă  trĂšs haute rĂ©solution (AVHRR), dont la taille de pixel de 1 km Ă  8 km est trop grande pour permettre l’examen des rĂ©actions Ă  grande Ă©chelle de la vĂ©gĂ©tation en raison du mĂ©langeage dans la zone de couverture des pixels. Dans cette communication, nous faisons le rapprochement des diffĂ©rences entre les mĂ©thodes de prĂ©lĂšvement de donnĂ©es sur le terrain et les mĂ©thodes de prĂ©lĂšvement des donnĂ©es par tĂ©lĂ©dĂ©tection en recourant Ă  des donnĂ©es Ă  moyenne rĂ©solution (30 m) et Ă  des donnĂ©es Ă  rĂ©solution grossiĂšre (1 km) dans le but d’étudier les rĂ©actions de la vĂ©gĂ©tation Ă©chelonnĂ©es sur 20 ans dans le cadre du rĂ©chauffement climatique dans le Nord (de 1986 Ă  2006). Les tendances sont comparĂ©es entre les diverses communautĂ©s vĂ©gĂ©tales Ă  partir de deux classifications Landsat distinctes dans la zone de transition forĂȘt-toundra de l’est et de l’ouest du Canada, ainsi qu’à partir d’une banque de donnĂ©es prĂ©levĂ©es au Canada Ă  l’aide d’un radiomĂštre perfectionnĂ© Ă  trĂšs haute rĂ©solution de 1 km rĂ©cemment mis au point. La comparaison des tendances absolues parmi les communautĂ©s vĂ©gĂ©tales mappĂ©es a rĂ©vĂ©lĂ© des communautĂ©s dominĂ©es par le lichen affichant constamment des tendances moins Ă©levĂ©es que les communautĂ©s dominĂ©es par les plantes vasculaires, toutes deux prĂ©sentant un indice d’activitĂ© vĂ©gĂ©tale accrue. Nos rĂ©sultats et ceux obtenus dans le cadre du rĂ©chauffement expĂ©rimental laissent croire que la diffĂ©rence de magnitude en ce qui a trait Ă  l’accroissement de l’indice d’activitĂ© vĂ©gĂ©tale entre la vĂ©gĂ©tation de lichen et la vĂ©gĂ©tation vasculaire se rapporte Ă  l’accroissement de la vigueur et de la biomasse de la vĂ©gĂ©tation vasculaire, par contraste avec l’altĂ©ration physiologique du lichen attribuable Ă  l’effet secondaire Ă  court terme de la tempĂ©rature sur l’humiditĂ©. À plus long terme, la succession du lichen aux plantes vasculaires est vraisemblablement responsable des petites augmentations observĂ©es au titre de l’indice d’activitĂ© vĂ©gĂ©tale dans les rĂ©gions dominĂ©es par le lichen. Le fait que le Landsat et l’AVHRR aient tous deux permis de dĂ©noter des tendances relatives semblables du point de vue de la vĂ©gĂ©tation et de l’indice d’activitĂ© vĂ©gĂ©tale laisse entendre que ce phĂ©nomĂšne peut ĂȘtre Ă©tendu dans le Nord

    The influence of shrub expansion on albedo and the winter radiation budget in the Canadian Low Arctic

    Get PDF
    Au cours des derniĂšres dĂ©cennies, le rĂ©chauffement climatique a entrainĂ© une arbustation accĂ©lĂ©rĂ©e des Ă©cosystĂšmes arctiques. En modifiant l'albĂ©do, les arbustes influencent la tempĂ©rature de l'atmosphĂšre, du manteau neigeux et du pergĂ©lisol, ce qui pourrait accĂ©lĂ©rer la fonte ou le dĂ©gel de ces deux derniers et initier de fortes boucles de rĂ©troaction positive qui accentueraient les effets des changements climatiques. L'une des consĂ©quences principales de cette arbustation est la rĂ©duction de l'albĂ©do de la neige par les branches qui dĂ©passent du manteau neigeux et en assombrissent la surface. De plus, des interactions complexes entre neige et arbustes d'une part modulent la remobilisation et le transport de la neige par le vent et d'autre part accĂ©lĂšrent la fonte durant les redoux. Ainsi, la prĂ©sence d'arbustes au sein du manteau neigeux peut affecter les propriĂ©tĂ©s physiques et optiques de la neige, altĂ©rant encore davantage l'albĂ©do de la surface affectĂ©e. Enfin, les branches ensevelies dans la neige peuvent Ă©galement influencer le budget radiatif en absorbant les rayons lumineux car ceux-ci pĂ©nĂštrent gĂ©nĂ©ralement Ă  plus de 10 cm de profondeur dans le manteau neigeux. Pour Ă©tudier et quantifier les interactions entre la neige, les arbustes et la lumiĂšre, nous avons rĂ©coltĂ© un jeu de donnĂ©es unique qui compare des manteaux neigeux avec et sans arbustes. Pour tous les sites Ă©chantillonnĂ©s, nous avons mesurĂ© l'albĂ©do spectral in situ et les profils de propriĂ©tĂ©s physiques de la neige ainsi que d'irradiance. Nous avons rĂ©coltĂ© ces donnĂ©es dans le bas Arctique, Ă  Umiujaq, Nord du QuĂ©bec, Canada (56° N, 76° W), au cours de plusieurs campagnes de terrain d'automne et d'hiver. En nous basant sur les donnĂ©es obtenues ainsi que des donnĂ©es de taille et de distribution verticale de branches d'arbustes, nous avons dĂ©veloppĂ© et validĂ© une paramĂ©trisation simple mais efficace permettant de modĂ©liser l'albĂ©do de surfaces hĂ©tĂ©rogĂšnes composĂ©es de neige et d'arbustes. Cette nouvelle paramĂ©trisation nous a permis de modĂ©liser l'albĂ©do avec une erreur infĂ©rieure Ă  3 %. Elle peut ĂȘtre utilisĂ©e de maniĂšre prĂ©dictive et est facile Ă  intĂ©grer aux modĂšles de systĂšme terre. L'albĂ©do ainsi modĂ©lisĂ© nous a permis d'Ă©lucider des processus importants des interactions entre la neige, les arbustes et la lumiĂšre. Nous avons trouvĂ© que la rĂ©duction de l'albĂ©do par les branches qui dĂ©passent du manteau neigeux dĂ©pend de la longueur d'ondes considĂ©rĂ©e. TĂŽt durant la saison nivale, les branches diminuent l'albedo de 55 % Ă  500 nm et 18 % Ă  1000 nm. En revanche, l'effet des branches sur les propriĂ©tĂ©s physiques de la neige n'Ă©taient pas suffisamment importants pour affecter l'albĂ©do, sauf lors d'Ă©vĂšnements climatiques extrĂȘmes comme les blizzards ou les Ă©pisodes de chaleur. Nos rĂ©sultats suggĂšrent que l'impact direct de l'assombrissement par les branches est largement supĂ©rieur aux effets indirects causĂ©s par les changements des propriĂ©tĂ©s physiques de la neige. Cependant, ces derniers pourraient gagner en importance si les Ă©vĂšnements climatiques extrĂȘmes devenaient plus frĂ©quents au fur et Ă  mesure que le rĂ©chauffement de l'Arctique s'intensifie. Finalement, nous montrons que l'impact des branches ensevelies sous la neige se traduit surtout par une augmentation de la fonte durant les Ă©pisodes de chaleur ainsi que par une intensification des processus mĂ©tamorphiques tĂŽt dans la saison. Cependant ces impacts Ă©taient extrĂȘmement localisĂ©s et restreints Ă  l'environnement trĂšs proche des branches. Pour cette raison, il a Ă©tĂ© difficile de quantifier l'impact des branches ensevelies sur le budget radiatif terrestre, d'autant plus que les concentrations de carbone suie Ă©levĂ©es (185 ng g⁻Âč) dans le manteau neigeux d'Umiujaq ont accentuĂ© l'incertitude quant Ă  l'effet relatif de ces deux processus sur l'albĂ©do. Finalement, comme notre paramĂ©trisation pour modĂ©liser l'albĂ©do a Ă©tĂ© dĂ©veloppĂ©e sur la base de donnĂ©es provenant d'un seul site, nous croyons qu'il serait nĂ©cessaire de la tester de maniĂšre plus gĂ©nĂ©rale, avec des donnĂ©es provenant d'autres endroits. De cette maniĂšre, elle pourrait ensuite ĂȘtre intĂ©grĂ©e aux modĂšles de surface continentale, ce qui permettrait d'inclure un effet rĂ©aliste de l'arbustation actuelle et future de l'Arctique sur les scĂ©narios climatiques locaux et globaux.Arctic warming is causing an expansion of deciduous shrubs in the Arctic tundra biome. By modifying albedo, shrubs affect the temperature of the atmosphere, snowpack and permafrost, potentially increasing permafrost thawing and snow melting, and forming a powerful feedback to global warming. The most prominent impact of shrubs is a reduction of surface albedo when dark branches protrude above the bright snow surface. Additionally, complex snow-shrub interactions modify snow redistribution during windy conditions and increase snowmelt rates during warm spells. Thus, snow over shrub-covered tundra may have different physical and optical properties, leading to further modification of surface albedo. Finally, shrub branches buried in snow may still have an impact on the radiation budget because they can absorb light rays which generally penetrate deeper than 10 cm into the snowpack. To study and quantify the snow-shrub-light interactions, we collected a unique dataset comparing snowpacks with and without shrubs. For every site sampled, we measured in situ spectral albedo (400–1080 nm) and recorded snow physical properties and irradiance profiles. These data were acquired in a low Arctic site near Umiujaq, Northern Quebec, Canada (56° N, 76° W), during several field campaigns in autumn and winter. Based on these field data and a dataset of branch sizes and vertical distribution, a simple yet accurate parameterization for modeling albedo of mixed snow-shrub surfaces was developed and validated. This new parameterization had an accuracy of 3 %, can be used in a predictive way, and is easy to implement in earth system models. We uncovered important insights on snow-shrub-light interactions. Surface darkening by protruding branches was wavelength-dependent, and decreased albedo early in the snow season by 55 % at 500 nm and 18 % at 1000 nm. Changes in snow physical properties that were significant enough to impact albedo only occurred in conjunction with extreme weather events like after blizzards or during warm spells. Thus, the direct impact of darkening from shrubs likely dominates over the indirect impact from changes in snow physical properties, however the latter may gain in importance if extreme weather events become more frequent as Arctic warming progresses. The impact of buried branches was very localized, increasing snow melting during warm spells and enhancing snow metamorphic processes early in the season in the direct vicinity of branches. However, quantifying the impact of buried branches on the radiation budget was challenging due to their highly localized effect and because of high black carbon concentrations in the snowpack at our study site, which reached 185 ng g-1. We suggest that future research test the parameterization developed here more broadly, as this study was based on data from just one study site. The parametrization can then be implemented into land surface models, allowing for reliable estimates of the effect of current and projected Arctic shrubification on global and regional warming
    • 

    corecore