5,290 research outputs found

    A data analysis of the academic use of social media

    Get PDF

    Development of Manufacturing Cells Using an Artificial Ant-Based Algorithm with Different Similarity Coefficients

    Get PDF
    Although there exists several ways of solving the cellular manufacturing problem, including several ant-based algorithms, many of these algorithms focus on obtaining the best possible answer instead of efficiency. An existing artificial-ant based algorithm AntClass, was modified so that it is easier to manipulate. AntClass uses Euclidean vectors to measure the similarity between parts, because similarity is used to group parts together instead of distances, the modified version uses similarity coefficients. The concept of heaping clusters was also introduced to ant algorithms for cellular manufacturing. Instead of using Euclidean vectors to measure the distance to the center of a heap, as in the AntClass algorithm, an average similarity was introduced to measure the similarity between a part and a heap. The algorithm was tested on five common similarity coefficients to determine the similarity coefficient which gives the better quality solution and the most efficient process

    The specificity and robustness of long-distance connections in weighted, interareal connectomes

    Full text link
    Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections are short, reflecting spatial and energetic constraints. Nonetheless, a small number of connections span long distances, consistent with the notion that the functionality of these connections must outweigh their cost. While the precise function of these long-distance connections is not known, the leading hypothesis is that they act to reduce the topological distance between brain areas and facilitate efficient interareal communication. However, this hypothesis implies a non-specificity of long-distance connections that we contend is unlikely. Instead, we propose that long-distance connections serve to diversify brain areas' inputs and outputs, thereby promoting complex dynamics. Through analysis of five interareal network datasets, we show that long-distance connections play only minor roles in reducing average interareal topological distance. In contrast, areas' long-distance and short-range neighbors exhibit marked differences in their connectivity profiles, suggesting that long-distance connections enhance dissimilarity between regional inputs and outputs. Next, we show that -- in isolation -- areas' long-distance connectivity profiles exhibit non-random levels of similarity, suggesting that the communication pathways formed by long connections exhibit redundancies that may serve to promote robustness. Finally, we use a linearization of Wilson-Cowan dynamics to simulate the covariance structure of neural activity and show that in the absence of long-distance connections, a common measure of functional diversity decreases. Collectively, our findings suggest that long-distance connections are necessary for supporting diverse and complex brain dynamics.Comment: 18 pages, 8 figure
    • …
    corecore