4,497 research outputs found

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    Asymptotically efficient estimators for geometric shape fitting and source localization

    Get PDF
    Solving the nonlinear estimation problem is known to be a challenging task because of the implicit relationship between the measurement data and the unknown parameters to be estimated. Iterative methods such as the Taylor-series expansion based ML estimator are presented in this thesis to solve the nonlinear estimation problem. However, they might suffer from the initialization and convergence problems. Other than the iterative methods, this thesis aims to provide a computational effective, asymptotically efficient and closed-form solution to the nonlinear estimation problem. Two kinds of classic nonlinear estimation problems are considered: the geometric shape fitting problem and the source localization problem. For the geometric shape fitting, the research in this thesis focuses on the circle and the ellipse fittings. Three iterative methods for the fitting of a single circle: the ML method, the FLS method and the SDP method, are provided and their performances are analyzed. To overcome the limitations of the iterative methods, asymptotically efficient and closed-form solutions for both the circle and ellipse fittings are derived. The good performances of the proposed solutions are supported by simulations using synthetic data as well as experiments on real images. The localization of a source via a group of sensors is another important nonlinear estimation problem studied in this thesis. Based on the TOA measurements, the CRLB and MSE results of a source location when sensor position errors are present are derived and compared to show the estimation performance loss due to the sensor position errors. A closed-formed estimator that takes into account the sensor position errors is then proposed. To further improve the sensor position and the source location estimates, an algebraic solution that jointly estimates the source and sensor positions is provided, which provides better performance in sensor position estimates at higher noise level comparing to the sequential estimation-refinement technique. The TOA based CRLB and MSE studies are further extended to the TDOA and AOA cases. Through the analysis one interesting result has been found: there are situations exist where taking into account the sensor position errors when estimating the source location will not improve the estimation accuracy. In such cases a calibration emitter with known position is needed to limit the estimation damage caused by the sensor position uncertainties. Investigation has been implemented to find out where would be the optimum position to place the calibration emitter. When the optimum calibration source position may be of theoretical interest only, a practical suboptimum criterion is developed which yields a better calibration emitter position than the closest to the unknown source criterion

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    Item Tracer

    Get PDF
    One of our daily issues for searching indoor lost item remain unresolved until today as there is no any systematic way of locating it. Unaccounted amount of time and energy has been wasted each day trying to retrieve it based on memory. Therefore, in this project, a prototype is proposed to locate indoor lost item utilizing received signal strength (RSS) for distance estimation. The prototype primary consists of a small size tag for attaching on any item and a reader for computing the estimated location of the tag. A positioning algorithm is developed to analyse the behaviour of received signal strength and calculate the probability of the target location. As the nature of indoor environment varies across each location, the prototype is tested at multiple indoor locations for refining the algorithm and verifying its robustness and consistency in estimating the target location. The results obtained showed that the percentage of error for direction probability is 32 % and accuracy of distance is at 0.9m
    corecore