518 research outputs found

    Towards Autonomous Defense of SDN Networks Using MuZero Based Intelligent Agents

    Get PDF
    The Software Defined Networking (SDN) paradigm enables the development of systems that centrally monitor and manage network traffic, providing support for the deployment of machine learning-based systems that automatically detect and mitigate network intrusions. This paper presents an intelligent system capable of deciding which countermeasures to take in order to mitigate an intrusion in a software defined network. The interaction between the intruder and the defender is posed as a Markov game and MuZero algorithm is used to train the model through self-play. Once trained, the model is integrated with an SDN controller, so that it is able to apply the countermeasures of the game in a real network. To measure the performance of the model, attackers and defenders with different training steps have been confronted and the scores obtained by each of them, the duration of the games and the ratio of games won have been collected. The results show that the defender is capable of deciding which measures minimize the impact of the intrusion, isolating the attacker and preventing it from compromising key machines in the network.This work was supported in part by the Spanish Centre for the Development of Industrial Technology (CDTI) through the Project EGIDA-RED DE EXCELENCIA EN TECNOLOGIAS DE SEGURIDAD Y PRIVACIDAD under Grant CER20191012, in part by the Spanish Ministry of Science and Innovation under Grant PID2019-104966GB-I00, in part by the Basque Business Development Agency (SPRI)-Basque Country Government ELKARTEK Program through the projects TRUSTIND under Grant KK-2020/00054 and 3KIA under Grant KK-2020/00049, and in part by the Basque Country Program of Grants for Research Groups under Grant IT-1244-19

    A methodology for the requirements analysis of critical real-time systems

    Get PDF
    PhD ThesisThis thesis describes a methodology for the requirements analysis of critical real-time systems. The methodology is based on formal methods, and provides a systematic way in which requirements can be analysed and specifications produced. The proposed methodology consists of a framework with distinct phases of analysis, a set oftechniques appropriate for the issues to be analysed at each phase of the framework, a hierarchical structure of the specifications obtained from the process of analysis, and techniques to perform quality assessment of the specifications. The phases of the framework, which are abstraction levels for the analysis of the requirements, follow directly from a general structure adopted for critical real-time systems. The intention is to define abstraction levels, or domains, in which the analysis of requirements can be performed in terms of specific properties of the system, thus reducing the inherent complexity of the analysis. Depending on the issues to be analysed in each domain, the choice of the appropriate formalism is determined by the set of features, related to that domain, that a formalism should possess. In this work, instead of proposing new formalisms we concentrate on identifying and enumerating those features that a formalism should have. The specifications produced at each phase of the framework are organised by means of a specification hierarchy, which facilitates our assessment of the quality of the requirements specifications, and their traceability. Such an assessment should be performed by qualitative and quantitative means in order to obtain high confidence (assurance) that the level of safety is acceptable. In order to exemplify the proposed methodology for the requirements analysis of critical real-time systems we discuss a case study based on a crossing of two rail tracks (in a model railway), which raises safety issues that are similar to those found at a traditional level crossing (i.e. rail-road)CAPES/Ministry of Education (Brazil

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification
    • …
    corecore