4,577 research outputs found

    Neural Networks forBuilding Semantic Models and Knowledge Graphs

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenFutia, Giusepp

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    An Automatic Ontology Generation Framework with An Organizational Perspective

    Get PDF
    Ontologies have been known for their powerful semantic representation of knowledge. However, ontologies cannot automatically evolve to reflect updates that occur in respective domains. To address this limitation, researchers have called for automatic ontology generation from unstructured text corpus. Unfortunately, systems that aim to generate ontologies from unstructured text corpus are domain-specific and require manual intervention. In addition, they suffer from uncertainty in creating concept linkages and difficulty in finding axioms for the same concept. Knowledge Graphs (KGs) has emerged as a powerful model for the dynamic representation of knowledge. However, KGs have many quality limitations and need extensive refinement. This research aims to develop a novel domain-independent automatic ontology generation framework that converts unstructured text corpus into domain consistent ontological form. The framework generates KGs from unstructured text corpus as well as refine and correct them to be consistent with domain ontologies. The power of the proposed automatically generated ontology is that it integrates the dynamic features of KGs and the quality features of ontologies

    Visual exploration of semantic-web-based knowledge structures

    Get PDF
    Humans have a curious nature and seek a better understanding of the world. Data, in- formation, and knowledge became assets of our modern society through the information technology revolution in the form of the internet. However, with the growing size of accumulated data, new challenges emerge, such as searching and navigating in these large collections of data, information, and knowledge. The current developments in academic and industrial contexts target the corresponding challenges using Semantic Web techno- logies. The Semantic Web is an extension of the Web and provides machine-readable representations of knowledge for various domains. These machine-readable representations allow intelligent machine agents to understand the meaning of the data and information; and enable additional inference of new knowledge. Generally, the Semantic Web is designed for information exchange and its processing and does not focus on presenting such semantically enriched data to humans. Visualizations support exploration, navigation, and understanding of data by exploiting humans’ ability to comprehend complex data through visual representations. In the context of Semantic- Web-Based knowledge structures, various visualization methods and tools are available, and new ones are being developed every year. However, suitable visualizations are highly dependent on individual use cases and targeted user groups. In this thesis, we investigate visual exploration techniques for Semantic-Web-Based knowledge structures by addressing the following challenges: i) how to engage various user groups in modeling such semantic representations; ii) how to facilitate understanding using customizable visual representations; and iii) how to ease the creation of visualizations for various data sources and different use cases. The achieved results indicate that visual modeling techniques facilitate the engagement of various user groups in ontology modeling. Customizable visualizations enable users to adjust visualizations to the current needs and provide different views on the data. Additionally, customizable visualization pipelines enable rapid visualization generation for various use cases, data sources, and user group

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    A Study on the Use of Ontologies to Represent Collective Knowledge

    Get PDF
    The development of ontologies has become an area of considerable research interest over the past number of years. Domain ontologies are often developed to represent a shared understanding that in turn indicates cooperative effort by a user community. However, the structure and form that an ontology takes is predicated both on the approach of the developer and the cooperation of the user community. A shift has taken place in recent years from the use of highly specialised and expressive ontologies to simpler knowledge models, progressively developed by community contribution. It is within this context that this thesis investigates the use of ontologies as a means to representing collective knowledge. It investigates the impact of the community on the approach to and outcome of knowledge representation and compares the use of simple terminological ontologies with highly structured expressive ontologies in community-based narrative environments
    • …
    corecore