192 research outputs found

    Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations

    Get PDF
    We have developed the following web servers for protein structural modeling and analysis at : THUMBUP, UMDHMM(TMHP) and TUPS, predictors of transmembrane helical protein topology based on a mean-burial-propensity scale of amino acid residues (THUMBUP), hidden Markov model (UMDHMM(TMHP)) and their combinations (TUPS); SPARKS 2.0 and SP(3), two profile–profile alignment methods, that match input query sequence(s) to structural templates by integrating sequence profile with knowledge-based structural score (SPARKS 2.0) and structure-derived profile (SP(3)); DFIRE, a knowledge-based potential for scoring free energy of monomers (DMONOMER), loop conformations (DLOOP), mutant stability (DMUTANT) and binding affinity of protein–protein/peptide/DNA complexes (DCOMPLEX & DDNA); TCD, a program for protein-folding rate and transition-state analysis of small globular proteins; and DOGMA, a web-server that allows comparative analysis of domain combinations between plant and other 55 organisms. These servers provide tools for prediction and/or analysis of proteins on the secondary structure, tertiary structure and interaction levels, respectively

    Algorithms for incorporating prior topological information in HMMs: application to transmembrane proteins

    Get PDF
    BACKGROUND: Hidden Markov Models (HMMs) have been extensively used in computational molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as transmembrane protein topology prediction, the incorporation of limited amount of information regarding the topology, arising from biochemical experiments, has been proved a very useful strategy that increased remarkably the performance of even the top-scoring methods. However, no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the models has been presented so far in the literature. RESULTS: We present here, a simple method that allows incorporation of prior topological information concerning the sequences at hand, while at the same time the HMMs retain their full probabilistic interpretation in terms of conditional probabilities. We present modifications to the standard Forward and Backward algorithms of HMMs and we also show explicitly, how reliable predictions may arise by these modifications, using all the algorithms currently available for decoding HMMs. A similar procedure may be used in the training procedure, aiming at optimizing the labels of the HMM's classes, especially in cases such as transmembrane proteins where the labels of the membrane-spanning segments are inherently misplaced. We present an application of this approach developing a method to predict the transmembrane regions of alpha-helical membrane proteins, trained on crystallographically solved data. We show that this method compares well against already established algorithms presented in the literature, and it is extremely useful in practical applications. CONCLUSION: The algorithms presented here, are easily implemented in any kind of a Hidden Markov Model, whereas the prediction method (HMM-TM) is freely available for academic users at , offering the most advanced decoding options currently available

    A Combination of Compositional Index and Genetic Algorithm for Predicting Transmembrane Helical Segments

    Get PDF
    Transmembrane helix (TMH) topology prediction is becoming a focal problem in bioinformatics because the structure of TM proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments. The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences. The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865, respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in favor of our proposed method. Availability: The datasets, software together with supplementary materials are available at: http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm

    Sequence Analysis of Membrane Proteins with the Web Server SPLIT

    Get PDF
    In this work, recently solved crystal structures of membrane proteins are examined with respect to the performance of the Web server SPLIT in predicting sequence location, conformation and orientation of membrane associated polypeptide segments. The SPLIT predictor is based on the preference functions method. Preference functions serve to transform the input choice of amino acid attributes into sequence dependent conformational preferences. Transmembrane helical segments are accurately predicted with a good selection of preference functions extracted from the compiled database of non-homologous integral membrane proteins. Unlike other algorithms with similar high accuracy, the SPLIT predictor requires no homology information. With preference functions extracted from soluble proteins, the sequence location of shorter non-transmembrane helices can be also found in membrane proteins. In particular, Richardson\u27s preference functions are even better than hydrophobic moments in finding interface helices at the water/lipid phase boundary. The Internet access for the SPLIT system is at the address: http://pref.etfos.hr/split

    Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements

    Get PDF
    Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn Asp, Phe Tyr, Lys Arg, Gln Glu, Ile Val, Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\overline{R} R = 0.85) between thirty amino acid mutability scales and the mutational inertia (I X ), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions. © 2017 The Author(s)

    Profiling patterns of interhelical associations in membrane proteins.

    Get PDF
    A novel set of methods has been developed to characterize polytopic membrane proteins at the topological, organellar and functional level, in order to reduce the existing functional gap in the membrane proteome. Firstly, a novel clustering tool was implemented, named PROCLASS, to facilitate the manual curation of large sets of proteins, in readiness for feature extraction. TMLOOP and TMLOOP writer were implemented to refine current topological models by predicting membrane dipping loops. TMLOOP applies weighted predictive rules in a collective motif method, to overcome the inherent limitations of single motif methods. The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity and 1,392 topological models described in the Swiss-Prot database were refined. The subcellular location (TMLOCATE) and molecular function (TMFUN) prediction methods rely on the TMDEPTH feature extraction method along data mining techniques. TMDEPTH uses refined topological models and amino acid sequences to calculate pairs of residues located at a similar depth in the membrane. Evaluation of TMLOCATE showed a normalized accuracy of 75% in discriminating between proteins belonging to the main organelles. At a sequence similarity threshold of 40%, TMFLTN predicted main functional classes with a sensitivity of 64.1-71.4%) and 70% of the olfactory GPCRs were correctly predicted. At a sequence similarity threshold of 90%, main functional classes were predicted with a sensitivity of 75.6-92.8%) and class A GPCRs were sub-classified with a sensitivity of 84.5%>-92.9%. These results reflect a direct association between the spatial arrangement of residues in the transmembrane regions and the capacity for polytopic membrane proteins to carry out their functions. The developed methods have for the first time categorically shown that the transmembrane regions hold essential information associated with a wide range of functional properties such as filtering and gating processes, subcellular location and molecular function

    AI-based structure prediction empowers integrative structural analysis of human nuclear pores

    Get PDF
    Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport. Their intricate 120-megadalton architecture remains incompletely understood. Here, we report a 70-megadalton model of the humanNPC scaffold with explicit membrane and in multiple conformational states. We combined artificial intelligence (AI)–based structure prediction with in situ and in cellulo cryo–electron tomography and integrative modeling. We show that linker nucleoporins spatially organize the scaffold within and across subcomplexes to establish the higher-order structure. Microsecond-long molecular dynamics simulationssuggest that the scaffold is not required to stabilize the inner and outer nuclear membrane fusion but rather widens the central pore. Our work exemplifies how AI-based modeling can be integrated within situ structural biology to understand subcellular architecture across spatial organization levels
    corecore