22,216 research outputs found

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance constraints. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors. An important feature of our refinement is that it allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We also show how our theory relates to, and can be used to reconcile a number of existing time and performance models and how their established theories can be exploited to represent and analyze interface specifications and refinement steps.\u

    A refinement relation for families of timed automata

    Get PDF
    Software Product Lines (SPLs) are families of systems that share a high number of common assets while differing in others. In component-based systems, components themselves can be SPLs, i.e., each component can be seen as a family of variations, with different interfaces and functionalities, typically parameterized by a set of features and a feature model that specifies the valid combinations of features. This paper explores how to safely replace such families of components with more refined ones. We propose a notion of refinement for Interface Featured Timed Automata (IFTA), a formalism to model families of timed automata with support for multi-action transitions. We separate the notion of IFTA refinement into behavioral and variability refinement, i.e., the refinement of the underlying timed automata and feature model. Furthermore, we define behavioral refinement for the semantic level, i.e., transition systems, as an alternating simulation between systems, and lift this definition to IFTA refinement. We illustrate this notion with examples throughout the text and show that refinement is a pre-order and compositional.European Regional Development Fund (ERDF) through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), and by National Funds through the Portuguese funding agency, FCT, within project TRUST, POCI-01-0145- FEDER-016826. In addition the first and second author are supported by FCT grants PD/BD/52238/2013 and SFRH/BPD/91908/2012, respectivel

    Modelling and Refinement in CODA

    Full text link
    This paper provides an overview of the CODA framework for modelling and refinement of component-based embedded systems. CODA is an extension of Event-B and UML-B and is supported by a plug-in for the Rodin toolset. CODA augments Event-B with constructs for component-based modelling including components, communications ports, port connectors, timed communications and timing triggers. Component behaviour is specified through a combination of UML-B state machines and Event-B. CODA communications and timing are given an Event-B semantics through translation rules. Refinement is based on Event-B refinement and allows layered construction of CODA models in a consistent way.Comment: In Proceedings Refine 2013, arXiv:1305.563

    Conformance Verification of Normative Specifications using C-O Diagrams

    Full text link
    C-O Diagrams have been introduced as a means to have a visual representation of normative texts and electronic contracts, where it is possible to represent the obligations, permissions and prohibitions of the different signatories, as well as what are the penalties in case of not fulfillment of their obligations and prohibitions. In such diagrams we are also able to represent absolute and relative timing constrains. In this paper we consider a formal semantics for C-O Diagrams based on a network of timed automata and we present several relations to check the consistency of a contract in terms of realizability, to analyze whether an implementation satisfies the requirements defined on its contract, and to compare several implementations using the executed permissions as criteria.Comment: In Proceedings FLACOS 2012, arXiv:1209.169

    Reusing Test-Cases on Different Levels of Abstraction in a Model Based Development Tool

    Full text link
    Seamless model based development aims to use models during all phases of the development process of a system. During the development process in a component-based approach, components of a system are described at qualitatively differing abstraction levels: during requirements engineering component models are rather abstract high-level and underspecified, while during implementation the component models are rather concrete and fully specified in order to enable code generation. An important issue that arises is assuring that the concrete models correspond to abstract models. In this paper, we propose a method to assure that concrete models for system components refine more abstract models for the same components. In particular we advocate a framework for reusing testcases at different abstraction levels. Our approach, even if it cannot completely prove the refinement, can be used to ensure confidence in the development process. In particular we are targeting the refinement of requirements which are represented as very abstract models. Besides a formal model of our approach, we discuss our experiences with the development of an Adaptive Cruise Control (ACC) system in a model driven development process. This uses extensions which we implemented for our model-based development tool and which are briefly presented in this paper.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results

    Timed Automata Semantics for Visual e-Contracts

    Full text link
    C-O Diagrams have been introduced as a means to have a more visual representation of electronic contracts, where it is possible to represent the obligations, permissions and prohibitions of the different signatories, as well as what are the penalties in case of not fulfillment of their obligations and prohibitions. In such diagrams we are also able to represent absolute and relative timing constraints. In this paper we present a formal semantics for C-O Diagrams based on timed automata extended with an ordering of states and edges in order to represent different deontic modalities.Comment: In Proceedings FLACOS 2011, arXiv:1109.239
    corecore