204,820 research outputs found

    Refinement via interpretation

    Get PDF
    Traditional notions of refinement of algebraic specifications, based on signature morphisms, are often too rigid to capture a number of relevant transformations in the context of software design, reuse and adaptation. This paper proposes an alternative notion of specification refinement, building on recent work on logic interpretation. The concept is discussed, its theory partially developed, its use illustrated through a number of examples.This research was supported by FCT (the Portuguese Foundation for Science and Technology) under contracts PTDC/EIA/73252/2006, at Minho University, as well as PTDC/MAT/68723/2006 and the Unidade de Investigacao Matematica e Aplicaoes of University of Aveiro

    Near Extremal Black Hole Entropy as Entanglement Entropy via AdS2/CFT1

    Full text link
    We point out that the entropy of (near) extremal black holes can be interpreted as the entanglement entropy of dual conformal quantum mechanics via AdS2/CFT1. As an explicit example, we study near extremal BTZ black holes and derive this claim from AdS3/CFT2. We also analytically compute the entanglement entropy in the two dimensional CFT of a free Dirac fermion compactified on a circle at finite temperature. From this result, we clarify the relation between the thermal entropy and entanglement entropy, which is essential for the entanglement interpretation of black hole entropy.Comment: LaTeX, 32 pages, 7 figures; refinement in the organizatio

    Set-free Markov state model building

    Get PDF
    Molecular dynamics (MD) simulations face challenging problems since the time scales of interest often are much longer than what is possible to simulate; and even if sufficiently long simulations are possible the complex nature of the resulting simulation data makes interpretation difficult. Markov State Models (MSMs) help to overcome these problems by making experimentally relevant time scales accessible via coarse grained representations that also allow for convenient interpretation. However, standard set-based MSMs exhibit some caveats limiting their approximation quality and statistical significance. One of the main caveats results from the fact that typical MD trajectories repeatedly re-cross the boundary between the sets used to build the MSM which causes statistical bias in estimating the transition probabilities between these sets. In this article, we present a set-free approach to MSM building utilizing smooth overlapping ansatz functions instead of sets and an adaptive refinement approach. This kind of meshless discretization helps to overcome the recrossing problem and yields an adaptive refinement procedure that allows us to improve the quality of the model while exploring state space and inserting new ansatz functions into the MSM

    Grope cobordism of classical knots

    Get PDF
    We explain the notion of a grope cobordism between two knots in a 3-manifold. Each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to our notion of grope cobordism. Thus our results can be viewed as a geometric interpretation of finite type invariants. An interesting refinement we study are knots modulo symmetric grope cobordism in 3-space. On one hand this theory maps onto the usual Vassiliev theory and on the other hand it maps onto the Cochran-Orr-Teichner filtration of the knot concordance group, via symmetric grope cobordism in 4-space. In particular, the graded theory contains information on finite type invariants (with degree h terms mapping to Vassiliev degree 2^h), Blanchfield forms or S-equivalence at h=2, Casson-Gordon invariants at h=3, and for h=4 one has the new von Neumann signatures of a knot.Comment: Final version. To appear in Topology. See http://www.math.cornell.edu/~jconant/pagethree.html for a PDF file with better figure qualit

    Refinement by interpretation in {\pi}-institutions

    Get PDF
    The paper discusses the role of interpretations, understood as multifunctions that preserve and reflect logical consequence, as refinement witnesses in the general setting of pi-institutions. This leads to a smooth generalization of the refinement-by-interpretation approach, recently introduced by the authors in more specific contexts. As a second, yet related contribution a basis is provided to build up a refinement calculus of structured specifications in and across arbitrary pi-institutions.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Bounded Refinement Types

    Full text link
    We present a notion of bounded quantification for refinement types and show how it expands the expressiveness of refinement typing by using it to develop typed combinators for: (1) relational algebra and safe database access, (2) Floyd-Hoare logic within a state transformer monad equipped with combinators for branching and looping, and (3) using the above to implement a refined IO monad that tracks capabilities and resource usage. This leap in expressiveness comes via a translation to "ghost" functions, which lets us retain the automated and decidable SMT based checking and inference that makes refinement typing effective in practice.Comment: 14 pages, International Conference on Functional Programming, ICFP 201
    • …
    corecore