9,736 research outputs found

    Timing diagrams add Requirements Engineering capability to Event-B Formal Development

    No full text
    Event-B is a language for the formal development of reactive systems. At present the RODIN toolkit [15] for Event-B is used for modeling requirements, specifying refinements and doing verification. In order to extend graphical requirements modeling capability into the real-time domain, where timing constraints are essential, we propose a Timing diagram (TD) [13] notation for Event-B. The UML 2.0 based notation provides an intuitive graphical specification capability for timing constraints and causal dependencies between system events. A translation scheme to Event-B is proposed and presented. Support for model refinement is provided. A partial case study is used to demonstrate the translation in practice

    Putting Teeth into Open Architectures: Infrastructure for Reducing the Need for Retesting

    Get PDF
    Proceedings Paper (for Acquisition Research Program)The Navy is currently implementing the open-architecture framework for developing joint interoperable systems that adapt and exploit open-system design principles and architectures. This raises concerns about how to practically achieve dependability in software-intensive systems with many possible configurations when: 1) the actual configuration of the system is subject to frequent and possibly rapid change, and 2) the environment of typical reusable subsystems is variable and unpredictable. Our preliminary investigations indicate that current methods for achieving dependability in open architectures are insufficient. Conventional methods for testing are suited for stovepipe systems and depend strongly on the assumptions that the environment of a typical system is fixed and known in detail to the quality-assurance team at test and evaluation time. This paper outlines new approaches to quality assurance and testing that are better suited for providing affordable reliability in open architectures, and explains some of the additional technical features that an Open Architecture must have in order to become a Dependable Open Architecture.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Step-wise development of resilient ambient campus scenarios

    Get PDF
    This paper puts forward a new approach to developing resilient ambient applications. In its core is a novel rigorous development method supported by a formal theory that enables us to produce a well-structured step-wise design and to ensure disciplined integration of error recovery measures into the resulting implementation. The development method, called AgentB, uses the idea of modelling database to support a coherent development of and reasoning about several model views, including the variable, event, role, agent and protocol views. This helps system developers in separating various modelling concerns and makes it easier for future tool developers to design a toolset supporting this development. Fault tolerance is systematically introduced during the development of various model views. The approach is demonstrated through the development of several application scenarios within an ambient campus case study conducted at Newcastle University (UK) as part of the FP6 RODIN project. © 2009 Springer Berlin Heidelberg
    • 

    corecore