3,883 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Breaking Virtual Barriers : Investigating Virtual Reality for Enhanced Educational Engagement

    Get PDF
    Virtual reality (VR) is an innovative technology that has regained popularity in recent years. In the field of education, VR has been introduced as a tool to enhance learning experiences. This thesis presents an exploration of how VR is used from the context of educators and learners. The research employed a mixed-methods approach, including surveying and interviewing educators, and conducting empirical studies to examine engagement, usability, and user behaviour within VR. The results revealed educators are interested in using VR for a wide range of scenarios, including thought exercises, virtual field trips, and simulations. However, they face several barriers to incorporating VR into their practice, such as cost, lack of training, and technical challenges. A subsequent study found that virtual reality can no longer be assumed to be more engaging than desktop equivalents. This empirical study showed that engagement levels were similar in both VR and non-VR environments, suggesting that the novelty effect of VR may be less pronounced than previously assumed. A study against a VR mind mapping artifact, VERITAS, demonstrated that complex interactions are possible on low-cost VR devices, making VR accessible to educators and students. The analysis of user behaviour within this VR artifact showed that quantifiable strategies emerge, contributing to the understanding of how to design for collaborative VR experiences. This thesis provides insights into how the end-users in the education space perceive and use VR. The findings suggest that while educators are interested in using VR, they face barriers to adoption. The research highlights the need to design VR experiences, with understanding of existing pedagogy, that are engaging with careful thought applied to complex interactions, particularly for collaborative experiences. This research contributes to the understanding of the potential of VR in education and provides recommendations for educators and designers to enhance learning experiences using VR

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Posthuman Creative Styling can a creative writer’s style of writing be described as procedural?

    Get PDF
    This thesis is about creative styling — the styling a creative writer might use to make their writing unique. It addresses the question as to whether such styling can be described as procedural. Creative styling is part of the technique a creative writer uses when writing. It is how they make the text more ‘lively’ by use of tips and tricks they have either learned or discovered. In essence these are rules, ones the writer accrues over time by their practice. The thesis argues that the use and invention of these rules can be set as procedures. and so describe creative styling as procedural. The thesis follows from questioning why it is that machines or algorithms have, so far, been incapable of producing creative writing which has value. Machine-written novels do not abound on the bookshelves and writing styled by computers is, on the whole, dull in comparison to human-crafted literature. It came about by thinking how it would be possible to reach a point where writing by people and procedural writing are considered to have equal value. For this reason the thesis is set in a posthuman context, where the differences between machines and people are erased. The thesis uses practice to inform an original conceptual space model, based on quality dimensions and dynamic-inter operation of spaces. This model gives an example of the procedures which a posthuman creative writer uses when engaged in creative styling. It suggests an original formulation for the conceptual blending of conceptual spaces, based on the casting of qualities from one space to another. In support of and informing its arguments are ninety-nine examples of creative writing practice which show the procedures by which style has been applied, created and assessed. It provides a route forward for further joint research into both computational and human-coded creative writing

    A mixed-mode dependent interface and phase-field damage model for solids with inhomogeneities

    Full text link
    The developed computational approach is capable of initiating and propagating cracks inside materials and along material interfaces of general multi-domain structures under quasi-static conditions. Special attention is paid to particular situation of a solid with inhomogeneities. Description of the fracture processes are based on the theory of material damage. It introduces two independent damage parameters to distinguish between interface and internal cracks. The parameter responsible for interface cracks is defined in a thin adhesive layer of the interface and renders relation between stress and strain quantities in fashion of cohesive zone models.The second parameter is defined inside material domains and it is founded on the theory of phase-field fracture guaranteeing the material damage to occur in a thin material strip introducing a regularised model of internal cracks. Additional property of both interface and phase-field damage is their capability to distinguish between fracture modes which is useful if the structures is subjected to combined loading. The solution methodology is based on a variational approach which allows implementation of non-linear programming optimisation into standard methods of finite-element discretisation and time stepping method.Computational implementation is prepared in MATLAB whose numerical data validate developed formulation for analysis of problems of fracture in multi-domain elements of structures.Comment: 24 pages, 19 figures, to be published in Theoretical and Applied Fracture Mechanic

    Scalable Exploration of Complex Objects and Environments Beyond Plain Visual Replication​

    Get PDF
    Digital multimedia content and presentation means are rapidly increasing their sophistication and are now capable of describing detailed representations of the physical world. 3D exploration experiences allow people to appreciate, understand and interact with intrinsically virtual objects. Communicating information on objects requires the ability to explore them under different angles, as well as to mix highly photorealistic or illustrative presentations of the object themselves with additional data that provides additional insights on these objects, typically represented in the form of annotations. Effectively providing these capabilities requires the solution of important problems in visualization and user interaction. In this thesis, I studied these problems in the cultural heritage-computing-domain, focusing on the very common and important special case of mostly planar, but visually, geometrically, and semantically rich objects. These could be generally roughly flat objects with a standard frontal viewing direction (e.g., paintings, inscriptions, bas-reliefs), as well as visualizations of fully 3D objects from a particular point of views (e.g., canonical views of buildings or statues). Selecting a precise application domain and a specific presentation mode allowed me to concentrate on the well defined use-case of the exploration of annotated relightable stratigraphic models (in particular, for local and remote museum presentation). My main results and contributions to the state of the art have been a novel technique for interactively controlling visualization lenses while automatically maintaining good focus-and-context parameters, a novel approach for avoiding clutter in an annotated model and for guiding users towards interesting areas, and a method for structuring audio-visual object annotations into a graph and for using that graph to improve guidance and support storytelling and automated tours. We demonstrated the effectiveness and potential of our techniques by performing interactive exploration sessions on various screen sizes and types ranging from desktop devices to large-screen displays for a walk-up-and-use museum installation. KEYWORDS - Computer Graphics, Human-Computer Interaction, Interactive Lenses, Focus-and-Context, Annotated Models, Cultural Heritage Computing

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    Acoustic Propagation Variation with Temperature Profile in Water Filled Steel Pipes at Pressure

    Get PDF
    Conventional pressure leak testing of buried pipelines compares measurements of pressure with pipe wall temperature. An alternative proposed method uses acoustic velocity measurements to replace pipe wall temperature measurements. Early experiments using this method identified anomalous results of rising acoustic velocities thought to be caused by air solution. This research investigated the anomalous acoustic velocity measurements by evaluation of acoustic velocity variation with pressure, temperature and air solution. Quiescent air solution rate experiments were carried out in water filled pipes. Computer modelling of the air bubble shape variation with pipe diameter was found to agree with bubble and drop experiments over the pipe diameter range from 100 mm to 1000 mm. Bubbles were found to maintain constant width over a large volume range confirmed by experiments and modelling
    corecore