1,016 research outputs found

    Integrated Design Tools for Embedded Control Systems

    Get PDF
    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about important non-functional real-time control systems demands, such as fault-tolerance, safety,\ud reliability, etc.\ud The approach is based on software implementation of CSP process algebra, in a modern way (pure objectoriented design in Java). Furthermore, it is intended that the tool will support the desirable system-engineering stepwise refinement design approach, relying on past research achievements ¿ the mechatronics design trajectory based on the building-blocks approach, covering all complex (mechatronics) engineering phases: physical system modeling, control law design, embedded control system implementation and real-life realization. Therefore, we expect that this project will result in an\ud adequate tool, with results applicable in a wide range of target hardware platforms, based on common (off-theshelf) distributed heterogeneous (cheap) processing units

    A Graph Transformation Approach for Modeling and Verification of UML 2.0 Sequence Diagrams

    Get PDF
    Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0 SD) are used to describe interactions in software systems. These diagrams must be verified in the early stages of software development process to guarantee the production of a reliable system. However, UML 2.0 SD lack formal semantics as all UML specifications, which makes their verification difficult, especially if we are modeling a critical system where the automation of verification is necessary. Communicating Sequential Processes (CSP) is a formal specification language that is suited for analysis and has many automatic verification tools. Thus, UML and CSP have complementary aspects, which are modeling and analysis. Recently, a formalization of UML 2.0 SD using CSP has been proposed in the literature; however, no automation of that formalization exists. In this paper, we propose an approach on the basis of the above formalization and a visual modeling tool to model and automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model checker can verify them. This approach aims to use UML 2.0 SD for modeling and CSP and its tools for verification. This approach is based on graph transformation, which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph grammar to perform the mapping of the latter into CSP. Failures-Divergence Refinement (FDR) is the model checking tool used to verify the behavioral properties of the source model transformation such as deadlock, livelock and determinism. The proposed approach and tool are illustrated through a case study

    Software for Embedded Control Systems

    Get PDF
    The research of our team deals with the realization of control schemes on digital computers. As such the emphasis is on embedded control software implementation. Applications are in the field of mechatronic devices, using a mechatronic design approach (the integrated and optimal design of a mechanical system and its embedded control system). The ultimate goal is to support the application developer (i.e. mechatronic design engineer) such that implementing control software according to ðo it the first time right¿ becomes business as usual

    Life of occam-Pi

    Get PDF
    This paper considers some questions prompted by a brief review of the history of computing. Why is programming so hard? Why is concurrency considered an “advanced” subject? What’s the matter with Objects? Where did all the Maths go? In searching for answers, the paper looks at some concerns over fundamental ideas within object orientation (as represented by modern programming languages), before focussing on the concurrency model of communicating processes and its particular expression in the occam family of languages. In that focus, it looks at the history of occam, its underlying philosophy (Ockham’s Razor), its semantic foundation on Hoare’s CSP, its principles of process oriented design and its development over almost three decades into occam-? (which blends in the concurrency dynamics of Milner’s ?-calculus). Also presented will be an urgent need for rationalisation – occam-? is an experiment that has demonstrated significant results, but now needs time to be spent on careful review and implementing the conclusions of that review. Finally, the future is considered. In particular, is there a future

    Building Blocks for Control System Software

    Get PDF
    Software implementation of control laws for industrial systems seem straightforward, but is not. The computer code stemming from the control laws is mostly not more than 10 to 30% of the total. A building-block approach for embedded control system development is advocated to enable a fast and efficient software design process.\ud We have developed the CTJ library, Communicating Threads for Java¿,\ud resulting in fundamental elements for creating building blocks to implement communication using channels. Due to the simulate-ability, our building block method is suitable for a concurrent engineering design approach. Furthermore, via a stepwise refinement process, using verification by simulation, the implementation trajectory can be done efficiently

    Safe and Verifiable Design of Concurrent Java Programs

    Get PDF
    The design of concurrent programs has a reputation for being difficult, and thus potentially dangerous in safetycritical real-time and embedded systems. The recent appearance of Java, whilst cleaning up many insecure aspects of OO programming endemic in C++, suffers from a deceptively simple threads model that is an insecure variant of ideas that are over 25 years old [1]. Consequently, we cannot directly exploit a range of new CASE tools -- based upon modern developments in parallel computing theory -- that can verify and check the design of concurrent systems for a variety of dangers\ud such as deadlock and livelock that otherwise plague us during testing and maintenance and, more seriously, cause catastrophic failure in service. \ud Our approach uses recently developed Java class\ud libraries based on Hoare's Communicating Sequential Processes (CSP); the use of CSP greatly simplifies the design of concurrent systems and, in many cases, a parallel approach often significantly simplifies systems originally approached sequentially. New CSP CASE tools permit designs to be verified against formal specifications\ud and checked for deadlock and livelock. Below we introduce CSP and its implementation in Java and develop a small concurrent application. The formal CSP description of the application is provided, as well as that of an equivalent sequential version. FDR is used to verify the correctness of both implementations, their\ud equivalence, and their freedom from deadlock and livelock

    MetTeL: A Generic Tableau Prover.

    Get PDF
    corecore