402 research outputs found

    Recent advances in petri nets and concurrency

    Get PDF
    CEUR Workshop Proceeding

    Lending Petri nets and contracts

    Get PDF
    Choreography-based approaches to service composition typically assume that, after a set of services has been found which correctly play the roles prescribed by the choreography, each service respects his role. Honest services are not protected against adversaries. We propose a model for contracts based on a extension of Petri nets, which allows services to protect themselves while still realizing the choreography. We relate this model with Propositional Contract Logic, by showing a translation of formulae into our Petri nets which preserves the logical notion of agreement, and allows for compositional verification

    Compatibility Checking for Asynchronously Communicating Software

    Get PDF
    International audienceCompatibility is a crucial problem that is encountered while constructing new software by reusing and composing existing components. A set of software components is called compatible if their composition preserves certain properties, such as deadlock freedom. However, checking compatibility for systems communicating asynchronously is an undecidable problem, and asynchronous communication is a common interaction mechanism used in building software systems. A typical approach in analyzing such systems is to bound the state space. In this paper, we take a different approach and do not impose any bounds on the number of participants or the sizes of the message buffers. Instead, we present a sufficient condition for checking compatibility of a set of asynchronously communicating components. Our approach relies on the synchronizability property which identifies systems for which interaction behavior remains the same when asynchronous communication is replaced with synchronous communication. Using the synchronizability property, we can check the compatibility of systems with unbounded message buffers by analyzing only a finite part of their behavior. We have implemented a prototype tool to automate our approach and we have applied it to many examples

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models
    • 

    corecore