14 research outputs found

    Coupled modelling of land surface microwave interactions using ENVISAT ASAR data

    Get PDF
    In the last decades microwave remote sensing has proven its capability to provide valuable information about the land surface. New sensor generations as e.g. ENVISAT ASAR are capable to provide frequent imagery with an high information content. To make use of these multiple imaging capabilities, sophisticated parameter inversion and assimilation strategies have to be applied. A profound understanding of the microwave interactions at the land surface is therefore essential. The objective of the presented work is the analysis and quantitative description of the backscattering processes of vegetated areas by means of microwave backscattering models. The effect of changing imaging geometries is investigated and models for the description of bare soil and vegetation backscattering are developed. Spatially distributed model parameterisation is realized by synergistic coupling of the microwave scattering models with a physically based land surface process model. This enables the simulation of realistic SAR images, based on bioand geophysical parameters. The adequate preprocessing of the datasets is crucial for quantitative image analysis. A stringent preprocessing and sophisticated terrain geocoding and correction procedure is therefore suggested. It corrects the geometric and radiometric distortions of the image products and is taken as the basis for further analysis steps. A problem in recently available microwave backscattering models is the inadequate parameterisation of the surface roughness. It is shown, that the use of classical roughness descriptors, as the rms height and autocorrelation length, will lead to ambiguous model parameterisations. A new two parameter bare soil backscattering model is therefore recommended to overcome this drawback. It is derived from theoretical electromagnetic model simulations. The new bare soil surface scattering model allows for the accurate description of the bare soil backscattering coefficients. A new surface roughness parameter is introduced in this context, capable to describe the surface roughness components, affecting the backscattering coefficient. It is shown, that this parameter can be directly related to the intrinsic fractal properties of the surface. Spatially distributed information about the surface roughness is needed to derive land surface parameters from SAR imagery. An algorithm for the derivation of the new surface roughness parameter is therefore suggested. It is shown, that it can be derived directly from multitemporal SAR imagery. Starting from that point, the bare soil backscattering model is used to assess the vegetation influence on the signal. By comparison of the residuals between measured backscattering coefficients and those predicted by the bare soil backscattering model, the vegetation influence on the signal can be quantified. Significant difference between cereals (wheat and triticale) and maize is observed in this context. It is shown, that the vegetation influence on the signal can be directly derived from alternating polarisation data for cereal fields. It is dependant on plant biophysical variables as vegetation biomass and water content. The backscattering behaviour of a maize stand is significantly different from that of other cereals, due to its completely different density and shape of the plants. A dihedral corner reflection between the soil and the stalk is identified as the major source of backscattering from the vegetation. A semiempirical maize backscattering model is suggested to quantify the influences of the canopy over the vegetation period. Thus, the different scattering contributions of the soil and vegetation components are successfully separated. The combination of the bare soil and vegetation backscattering models allows for the accurate prediction of the backscattering coefficient for a wide range of surface conditions and variable incidence angles. To enable the spatially distributed simulation of the SAR backscattering coefficient, an interface to a process oriented land surface model is established, which provides the necessary input variables for the backscattering model. Using this synergistic, coupled modelling approach, a realistic simulation of SAR images becomes possible based on land surface model output variables. It is shown, that this coupled modelling approach leads to promising and accurate estimates of the backscattering coefficients. The remaining residuals between simulated and measured backscatter values are analysed to identify the sources of uncertainty in the model. A detailed field based analysis of the simulation results revealed that imprecise soil moisture predictions by the land surface model are a major source of uncertainty, which can be related to imprecise soil texture distribution and soil hydrological properties. The sensitivity of the backscattering coefficient to the soil moisture content of the upper soil layer can be used to generate soil moisture maps from SAR imagery. An algorithm for the inversion of soil moisture from the upper soil layer is suggested and validated. It makes use of initial soil moisture values, provided by the land surface process model. Soil moisture values are inverted by means of the coupled land surface backscattering model. The retrieved soil moisture results have an RMSE of 3.5 Vol %, which is comparable to the measurement accuracy of the reference field data. The developed models allow for the accurate prediction of the SAR backscattering coefficient. The various soil and vegetation scattering contributions can be separated. The direct interface to a physically based land surface process model allows for the spatially distributed modelling of the backscattering coefficient and the direct assimilation of remote sensing data into a land surface process model. The developed models allow for the derivation of static and dynamic landsurface parameters, as e.g. surface roughness, soil texture, soil moisture and biomass from remote sensing data and their assimilation in process models. They are therefore reliable tools, which can be used for sophisticated practice oriented problem solutions in manifold manner in the earth and environmental sciences

    Investigation of the microwave signatures of the Baltic Sea ice

    Get PDF
    It is essential for winter shipping in the Baltic Sea to get reliable and up-to-date information of its rapidly changing ice conditions. Spaceborne synthetic aperture radar (SAR) images are the only way to produce this information operationally in fine scale independent of daylight and nearly independent of weather conditions. Currently, classification algorithms for the RADARSAT-1 and ENVISAT SAR images utilize mainly the image structure and only limited information on sea ice geophysics and empirical statistics of backscattering signatures of various ice types are utilized. Therefore, interpretation of the classification results is often difficult. Both classification results and their interpretation should very likely improve with the addition of this information. Spaceborne microwave radiometer data are not suitable for the operational Baltic Sea ice monitoring aiding ship navigation due to their coarse spatial resolution, but they can provide an independent data source on the sea ice conditions for validation of the SAR classification algorithms. Both SAR and radiometer data based sea ice products can also be utilized in the geophysical studies of the Baltic Sea ice. In order to support development of operational classification algorithms for SAR and radiometer data, basic research on the microwave remote sensing of the Baltic Sea ice has been conducted in this work. The research work included the following topics: (1) statistics of C- and X-band backscattering signatures of various ice types, (2) statistics of L- and C-band polarimetric discriminants of various ice types, (3) radar incidence angle dependence of backscattering coefficient (σ°) in RADARSAT-1 SAR images, (4) dependence between standard deviation and measurement length for σ° signatures and its usability in sea ice classification, (5) comparison between SAR σ° time series and results from a thermodynamic snow/ice model, and (6) statistics of passive microwave signatures of various ice types. Additionally, a comprehensive literature review of the previous work on the microwave remote sensing of the Baltic Sea ice is presented. The main results of this work include the following. It is not possible to discriminate open water and various ice types using the level of σ°, co- or cross-polarization ratio, or standard deviation of σ°. C-band VH-polarized σ° at high incidence angle provides slightly better ice type discrimination accuracy than any other combination of C- and X-band radar parameters. VH-polarization is more suitable for estimating the degree of ice deformation than co-polarizations. Snow wetness has a large effect on the σ° statistics. Notably, when snow cover is wet then the σ° contrasts between various ice types are smaller than in the dry snow case. Incidence angle dependence of the C-band HH-polarized σ° was derived for level ice and deformed ice. It is utilized in the operational SAR classification algorithms developed by Finnish Institute of Marine Research. The method for deriving the σ° incidence angle dependence is applicable for any SAR sensor. There is a large variation of level ice σ° with changing weather conditions. A 1-D high-resolution thermodynamic snow/ice model generally helps to interpret changes in the σ° time series. The modeled snow and ice surface temperature, cases of snow melting, and evolution of snow and ice thickness are related to the changes in σ°. It was found out that the standard deviation of σ° for various ice types depends on the length of measurement. This may be utilized in the SAR image classification. It is not possible to resolve concentrations of thin new ice and all other ice types combined in the Baltic Sea using radiometer data as has been done for the Arctic seasonal ice zones.Talvimerenkulku Itämerellä tarvitsee luotettavaa ja ajantasaista informaatiota Itämeren nopeasti muuttuvista jääoloista. Synteettisen apertuurin tutkan (SAR) kuvat ovat ainoa tapa tuottaa operatiivisesti tarvittavaa jääinformaatiota riippumatta päivänvalon määrästä ja lähes riippumatta sääolosuhteista. RADARSAT-1 ja ENVISAT SAR-tutkakuvien luokittelualgoritmit perustuvat tällä hetkellä lähinnä kuvien rakenteeseen, eikä merijään geofysiikkaa ja empiiristä tilastotietoa eri jäätyyppien sirontavasteista hyödynnetä kuin rajallisesti. SAR-kuvien luokittelutulosten tulkitseminen on siten usein vaikeaa. Sekä itse luokittelutulokset, että niiden tulkinta parantuisivat, jos luokittelualgorimit hyödyntäisivät edellä mainittua tietoa. Satelliittiradiometrien kuvat eivät sovellu Itämeren jään operatiiviseen monitorointiin niiden karkean spatiaalisen resoluution vuoksi. Niillä kuitenkin voitaisiin validoida SAR-kuvien luokittelualgoritmeja, koska ne ovat SAR-kuvista riippumaton datalähde Itämeren jääoloista. Tässä työssä on suoritettu seuraavaa perustutkimusta Itämeren jään mikroaaltokaukokartoituksessa, minkä tarkoituksena on tukea SAR- ja radiometrikuvien operatiivisten luokittelualgoritmien kehitystyötä: (1) eri jäätyyppien C- ja X-kanavien sirontakertoimien (σ°) statistiikka, (2) eri jäätyyppien L- ja C-kanavien polarimetristen diskriminanttien statistiikka, (3) σ°:n mittauskulmariippuvuus RADARSAT-1 SAR-kuvissa, (4) σ°:n keskihajonnan ja mittausmatkan välinen riippuvuus ja hyödyntäminen jäätyyppiluokittelussa, (5) SAR-kuvien sirontakerroinaikasarjojen vertailu merijään termodynamiikkamalliin, ja (6) eri jäätyyppien kirkkauslämpötilojen statistiikka. Työssä saavutettiin seuraavia merkittäviä tuloksia. Eri jäätyyppien ja avoveden luokittelu ei ole mahdollista käyttäen sirontakerrointa, yhdensuuntais- ja ristipolarisaatiosuhdetta tai σ° keskihajontaa. C-kanavan VH-polarisaation σ° suurella mittauskulmalla luokittelee eri jäätyypit hieman paremmin kuin mikään muu C- ja X-kanavan tutkaparametrikombinaatio. Merijään deformoitumisasteen estimointiin sopii paremmin VH-polarisaation σ° kuin yhdensuuntaispolarisaation. Lumipeitteen kosteudella on suuri vaikutus sirontakerroinstatistiikkaan; erityisesti, kun lumipeite on märkä on sirontakerroinkontrasti eri jäätyyppien välillä pienempi kun lumipeite on kuiva. C-kanavan HH-polarisaation σ°:n mittauskulmariippuvuus määritettiin tasaiselle ja deformoituneelle jäälle. Mittauskulmariippuvuuden laskentamenetelmää voidaan käyttää mille tahansa SAR-tutkakuvalle. Muuttuvat sääolosuhteet aiheuttavat suuria muutoksia tasaisen jään σ°:ssa. Merijään termodynamiikkamalli yleensä auttaa selittämään muutoksia σ°:n aikasarjassa. σ°:n muutokset ovat yhteydessä termodynamiikkamallilla laskettuihin lumen ja jään parametreihin. σ°:n keskihajonnan havaittiin riippuvan etäisyydestä. Tätä riippuvuutta voitaneen hyödyntään SAR-kuvien luokittelussa. Itämerellä satelliittiradiometridatalla pystytään määrittämään vain merijään kokonaiskonsetraatio, toisin kuin arktisten merien kausiluontoisilla merijääalueilla, missä myös eri jäätyyppien konsentraatioiden määrittäminen on mahdollista.reviewe

    Remote sensing of snow-cover for the boreal forest zone using microwave radar

    Get PDF
    This doctoral dissertation describes the development of an operationally feasible snow monitoring methodology utilizing spaceborne synthetic aperture radar (SAR) imagery, intended for hydrological applications on the boreal forest zone. The snow-covered area (SCA) estimation methodology developed is characterized using extensive satellite-based datasets, including SAR-based estimation and optical reference data gathered during the snow-melt seasons of 1997-1998, 2000-2002 and 2004-2006 from northern Finland. The methodology applies satellite-based C-band SAR data for snow monitoring during the spring snow-melt season. The SCA information can be utilized for river discharge forecasting and flood predictions and for the optimization of hydropower production. The development efforts included 1) demonstration of a forest compensation algorithm, 2) establishing the use of wide-swath SAR data 3) development of a weather station assimilation procedure and 4) creation of an enhanced reference image selection algorithm for the SCA estimation methodology. The feasibility of a proposed, non-boreal forest specific, SAR-based SCA estimation method was evaluated for the boreal forest zone. The acquired results were compared with the characteristics determined for the boreal-forest specific methodology developed within this dissertation. These results can be used when selecting appropriate SCA estimation approaches for future snow monitoring systems whether conducted in different regions or intended for larger i.e. continental or global scale purposes. An automatic processing system for SCA estimation was developed and demonstrated as part of this work; the system has been delivered to the Finnish Environment Institute for operational use

    Earth observation for water resource management in Africa

    Get PDF

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    CHARACTERIZING RICE RESIDUE BURNING AND ASSOCIATED EMISSIONS IN VIETNAM USING A REMOTE SENSING AND FIELD-BASED APPROACH

    Get PDF
    Agricultural residue burning, practiced in croplands throughout the world, adversely impacts public health and regional air quality. Monitoring and quantifying agricultural residue burning with remote sensing alone is difficult due to lack of field data, hazy conditions obstructing satellite remote sensing imagery, small field sizes, and active field management. This dissertation highlights the uncertainties, discrepancies, and underestimation of agricultural residue burning emissions in a small-holder agriculturalist region, while also developing methods for improved bottom-up quantification of residue burning and associated emissions impacts, by employing a field and remote sensing-based approach. The underestimation in biomass burning emissions from rice residue, the fibrous plant material left in the field after harvest and subjected to burning, represents the starting point for this research, which is conducted in a small-holder agricultural landscape of Vietnam. This dissertation quantifies improved bottom-up air pollution emissions estimates through refinements to each component of the fine-particulate matter emissions equation, including the use of synthetic aperture radar timeseries to explore rice land area variation between different datasets and for date of burn estimates, development of a new field method to estimate both rice straw and stubble biomass, and also improvements to emissions quantification through the use of burning practice specific emission factors and combustion factors. Moreover, the relative contribution of residue burning emissions to combustion sources was quantified, demonstrating emissions are higher than previously estimated, increasing the importance for mitigation. The dissertation further explored air pollution impacts from rice residue burning in Hanoi, Vietnam through trajectory modelling and synoptic meteorology patterns, as well as timeseries of satellite air pollution and reanalysis datasets. The results highlight the inherent difficulty to capture air pollution impacts in the region, especially attributed to cloud cover obstructing optical satellite observations of episodic biomass burning. Overall, this dissertation found that a prominent satellite-based emissions dataset vastly underestimates emissions from rice residue burning. Recommendations for future work highlight the importance for these datasets to account for crop and burning practice specific emission factors for improved emissions estimates, which are useful to more accurately highlight the importance of reducing emissions from residue burning to alleviate air quality issues

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    corecore