2,092 research outputs found

    4D electron imaging: principles and perspectives

    Get PDF
    In this perspective we highlight developments and concepts in the field of 4D electron imaging. With spatial and temporal resolutions reaching the picometer and femtosecond, respectively, the field is now embracing ultrafast electron diffraction, crystallography and microscopy. Here, we overview the principles involved in the direct visualization of structural dynamics with applications in chemistry, materials science and biology. The examples include the studies of complex isolated chemical reactions, phase transitions and cellular structures. We conclude with an outlook on the potential of the approach and with some questions that may define new frontiers of research

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is a combined activity of Case Western Reserve University, Ohio Aerospace Institute (OAI) and NASA Lewis. The purpose of ICOMP is to develop techniques to improve problem solving capabilities in all aspects of computational mechanics related to propulsion. The activities at ICOMP during 1991 are described

    MEVTV Workshop on Tectonic Features on Mars

    Get PDF
    The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed

    Coalescence of Liquid Drops: Different Models Versus\ud Experiment

    Get PDF
    The process of coalescence of two identical liquid drops is simulated numerically in the framework of two essentially different mathematical models, and the results are compared with experimental data on the very early stages of the coalescence process reported recently. The first model tested is the ‘conventional’ one, where it is assumed that coalescence as the formation of a single body of fluid occurs by an instant appearance of a liquid bridge smoothly connecting the two drops, and the subsequent process is the evolution of this single body of fluid driven by capillary forces. The second model under investigation considers coalescence as a process where a section of the free surface becomes trapped between the bulk phases as the drops are pressed against each other, and it is the gradual disappearance of this ‘internal interface’ that leads to the formation of a single body of fluid and the conventional model taking over. Using the full numerical solution of the problem in the framework of each of the two models, we show that the recently reported electrical measurements probing the very early stages of the process are better described by the interface formation/disappearance model. New theory-guided experiments are suggested that would help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different ‘scaling laws’ advanced as approximate solutions to the problem formulated using the conventional model is\ud established

    Computational Hydraulics

    Get PDF
    Computational Hydraulics introduces the concept of modeling and the contribution of numerical methods and numerical analysis to modeling. It provides a concise and comprehensive description of the basic hydraulic principles, and the problems addressed by these principles in the aquatic environment. Flow equations, numerical and analytical solutions are included. The necessary steps for building and applying numerical methods in hydraulics comprise the core of the book and this is followed by a report of different example applications of computational hydraulics: river training effects on flood propagation, water quality modelling of lakes and coastal applications. The theory and exercises included in the book promote learning of concepts within academic environments.  Sample codes are made available online for purchasers of the book. Computational Hydraulics is intended for under-graduate and graduate students, researchers, members of governmental and non-governmental agencies and professionals involved in management of the water related problems.

    State estimators in soft sensing and sensor fusion for sustainable manufacturing

    Get PDF
    State estimators, including observers and Bayesian filters, are a class of model-based algorithms for estimating variables in a dynamical system given sensor measurements of related system states. They can be used to derive fast and accurate estimates of system variables which cannot be measured directly (’soft sensing’) or for which only noisy, intermittent, delayed, indirect or unreliable measurements are available, perhaps from multiple sources (’sensor fusion’). In this paper we introduce the concepts and main methods of state estimation and review recent applications in improving the sustainability of manufacturing processes. It is shown that state estimation algorithms can play a key role in manufacturing systems to accurately monitor and control processes to improve efficiencies, lower environmental impact, enhance product quality, improve the feasibility of processing more sustainable raw materials, and ensure safer working environments for humans. We discuss current and emerging trends in using state estimation as a framework for combining physical knowledge with other sources of data for monitoring and control of distributed manufacturing systems

    Summary of Research 2000, Department of Mechanical Engineering

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or U.S. Government.This report contains project summaries of the research projects in the Department of Mechanical Engineering. A list of recent publications is also included, which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. Thesis abstracts of students advised by faculty in the Department are also included

    ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science

    Observers for discrete-time nonlinear systems

    Get PDF
    Observer synthesis for discrete-time nonlinear systems with special applications to parameter estimation is analyzed. Two new types of observers are developed. The first new observer is an adaptation of the Friedland continuous-time parameter estimator to discrete-time systems. The second observer is an adaptation of the continuous-time Gauthier observer to discrete-time systems. By adapting these observers to discrete-time continuous-time parameter estimation problems which were formerly intractable become tractable. In addition to the two newly developed observers, two observers already described in the literature are analyzed and deficiencies with respect to noise rejection are demonstrated. improved versions of these observers are proposed and their performance demonstrated. The issues of discrete-time observability, discrete-time system inversion, and optimal probing are also addressed
    • …
    corecore