7,845 research outputs found

    Refined activation strategy for the marking game

    Get PDF
    AbstractThis paper introduces a new strategy for playing the marking game on graphs. Using this strategy, we prove that if G is a planar graph, then the game colouring number of G, and hence the game chromatic number of G, is at most 17

    Asymmetric coloring games on incomparability graphs

    Full text link
    Consider the following game on a graph GG: Alice and Bob take turns coloring the vertices of GG properly from a fixed set of colors; Alice wins when the entire graph has been colored, while Bob wins when some uncolored vertices have been left. The game chromatic number of GG is the minimum number of colors that allows Alice to win the game. The game Grundy number of GG is defined similarly except that the players color the vertices according to the first-fit rule and they only decide on the order in which it is applied. The (a,b)(a,b)-game chromatic and Grundy numbers are defined likewise except that Alice colors aa vertices and Bob colors bb vertices in each round. We study the behavior of these parameters for incomparability graphs of posets with bounded width. We conjecture a complete characterization of the pairs (a,b)(a,b) for which the (a,b)(a,b)-game chromatic and Grundy numbers are bounded in terms of the width of the poset; we prove that it gives a necessary condition and provide some evidence for its sufficiency. We also show that the game chromatic number is not bounded in terms of the Grundy number, which answers a question of Havet and Zhu

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    A new upper bound on the game chromatic index of graphs

    Full text link
    We study the two-player game where Maker and Breaker alternately color the edges of a given graph GG with kk colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index χg(G)\chi'_g(G) denotes the smallest kk for which Maker has a winning strategy. The trivial bounds Δ(G)χg(G)2Δ(G)1\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1 hold for every graph GG, where Δ(G)\Delta(G) is the maximum degree of GG. In 2008, Beveridge, Bohman, Frieze, and Pikhurko proved that for every δ>0\delta>0 there exists a constant c>0c>0 such that χg(G)(2c)Δ(G)\chi'_g(G) \le (2-c)\Delta(G) holds for any graph with Δ(G)(12+δ)v(G)\Delta(G) \ge (\frac{1}{2}+\delta)v(G), and conjectured that the same holds for every graph GG. In this paper, we show that χg(G)(2c)Δ(G)\chi'_g(G) \le (2-c)\Delta(G) is true for all graphs GG with Δ(G)Clogv(G)\Delta(G) \ge C \log v(G). In addition, we consider a biased version of the game where Breaker is allowed to color bb edges per turn and give bounds on the number of colors needed for Maker to win this biased game.Comment: 17 page

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    A Connected Version of the Graph Coloring Game

    Get PDF
    The graph coloring game is a two-player game in which, given a graph G and a set of k colors, the two players, Alice and Bob, take turns coloring properly an uncolored vertex of G, Alice having the first move. Alice wins the game if and only if all the vertices of G are eventually colored. The game chromatic number of a graph G is then defined as the smallest integer k for which Alice has a winning strategy when playing the graph coloring game on G with k colors. In this paper, we introduce and study a new version of the graph coloring game by requiring that, after each player's turn, the subgraph induced by the set of colored vertices is connected. The connected game chromatic number of a graph G is then the smallest integer k for which Alice has a winning strategy when playing the connected graph coloring game on G with k colors. We prove that the connected game chromatic number of every outerplanar graph is at most 5 and that there exist outerplanar graphs with connected game chromatic number 4. Moreover, we prove that for every integer k ≥ 3, there exist bipartite graphs on which Bob wins the connected coloring game with k colors, while Alice wins the connected coloring game with two colors on every bipartite graph
    corecore