12 research outputs found

    On multicolor Ramsey numbers of triple system paths of length 3

    Full text link
    Let H\mathcal{H} be a 3-uniform hypergraph. The multicolor Ramsey number rk(H) r_k(\mathcal{H}) is the smallest integer nn such that every coloring of ([n]3) \binom{[n]}{3} with kk colors has a monochromatic copy of H\mathcal{H}. Let L \mathcal{L} be the loose 3-uniform path with 3 edges and M \mathcal{M} denote the messy 3-uniform path with 3 edges; that is, let L={abc,cde,efg}\mathcal{L} = \{abc, cde, efg\} and M={abc,bcd,def}\mathcal{M} = \{ abc, bcd, def\}. In this note we prove rk(L)<1.55k r_k(\mathcal{L}) < 1.55k and rk(M)<1.6k r_k(\mathcal{M}) < 1.6k for kk sufficiently large. The former result improves on the bound rk(L)<1.975k+7k r_k( \mathcal{L}) < 1.975k + 7\sqrt{k}, which was recently established by {\L}uczak and Polcyn.Comment: 18 pages, 3 figure

    Clique Factors: Extremal and Probabilistic Perspectives

    Get PDF
    A K_r-factor in a graph G is a collection of vertex-disjoint copies of K_r covering the vertex set of G. In this thesis, we investigate these fundamental objects in three settings that lie at the intersection of extremal and probabilistic combinatorics. Firstly, we explore pseudorandom graphs. An n-vertex graph is said to be (p,β)-bijumbled if for any vertex sets A, B ⊆ V (G), we have e( A, B) = p| A||B| ± β√|A||B|. We prove that for any 3 ≤ r ∈ N and c > 0 there exists an ε > 0 such that any n-vertex (p, β)-bijumbled graph with n ∈ rN, δ(G) ≥ c p n and β ≤ ε p^{r −1} n, contains a K_r -factor. This implies a corresponding result for the stronger pseudorandom notion of (n, d, λ)-graphs. For the case of K_3-factors, this result resolves a conjecture of Krivelevich, Sudakov and Szabó from 2004 and it is tight due to a pseudorandom triangle-free construction of Alon. In fact, in this case even more is true: as a corollary to this result, we can conclude that the same condition of β = o( p^2n) actually guarantees that a (p, β)-bijumbled graph G contains every graph on n vertices with maximum degree at most 2. Secondly, we explore the notion of robustness for K_3-factors. For a graph G and p ∈ [0, 1], we denote by G_p the random sparsification of G obtained by keeping each edge of G independently, with probability p. We show that there exists a C > 0 such that if p ≥ C (log n)^{1/3}n^{−2/3} and G is an n-vertex graph with n ∈ 3N and δ(G) ≥ 2n/3 , then with high probability G_p contains a K_3-factor. Both the minimum degree condition and the probability condition, up to the choice of C, are tight. Our result can be viewed as a common strengthening of the classical extremal theorem of Corrádi and Hajnal, corresponding to p = 1 in our result, and the famous probabilistic theorem of Johansson, Kahn and Vu establishing the threshold for the appearance of K_3-factors (and indeed all K_r -factors) in G (n, p), corresponding to G = K_n in our result. It also implies a first lower bound on the number of K_3-factors in graphs with minimum degree at least 2n/3, which gets close to the truth. Lastly, we consider the setting of randomly perturbed graphs; a model introduced by Bohman, Frieze and Martin, where one starts with a dense graph and then adds random edges to it. Specifically, given any fixed 0 < α < 1 − 1/r we determine how many random edges one must add to an n-vertex graph G with δ(G) ≥ α n to ensure that, with high probability, the resulting graph contains a K_r -factor. As one increases α we demonstrate that the number of random edges required ‘jumps’ at regular intervals, and within these intervals our result is best-possible. This work therefore bridges the gap between the seminal work of Johansson, Kahn and Vu mentioned above, which resolves the purely random case, i.e., α = 0, and that of Hajnal and Szemerédi (and Corrádi and Hajnal for r = 3) showing that when α ≥ 1 − 1/r the initial graph already hosts the desired K_r -factor.Ein K_r -Faktor in einem Graphen G ist eine Sammlung von Knoten-disjunkten Kopien von K_r , die die Knotenmenge von G überdecken. Wir untersuchen diese Objekte in drei Kontexten, die an der Schnittstelle zwischen extremaler und probabilistischer Kombinatorik liegen. Zuerst untersuchen wir Pseudozufallsgraphen. Ein Graph heißt (p,β)-bijumbled, wenn für beliebige Knotenmengen A, B ⊆ V (G) gilt e( A, B) = p| A||B| ± β√|A||B|. Wir beweisen, dass es für jedes 3 ≤ r ∈ N und c > 0 ein ε > 0 gibt, so dass jeder n-Knoten (p, β)-bijumbled Graph mit n ∈ rN, δ(G) ≥ c p n und β ≤ ε p^{r −1} n, einen K_r -Faktor enthält. Dies impliziert ein entsprechendes Ergebnis für den stärkeren Pseudozufallsbegriff von (n, d, λ)-Graphen. Im Fall von K_3-Faktoren, löst dieses Ergebnis eine Vermutung von Krivelevich, Sudakov und Szabó aus dem Jahr 2004 und ist durch eine pseudozufällige K_3-freie Konstruktion von Alon bestmöglich. Tatsächlich ist in diesem Fall noch mehr wahr: als Korollar dieses Ergebnisses können wir schließen, dass die gleiche Bedingung von β = o( p^2n) garantiert, dass ein (p, β)-bijumbled Graph G jeden Graphen mit maximalem Grad 2 enthält. Zweitens untersuchen wir den Begriff der Robustheit für K_3-Faktoren. Für einen Graphen G und p ∈ [0, 1] bezeichnen wir mit G_p die zufällige Sparsifizierung von G, die man erhält, indem man jede Kante von G unabhängig von den anderen Kanten mit einer Wahrscheinlichkeit p behält. Wir zeigen, dass, wenn p ≥ C (log n)^{1/3}n^{−2/3} und G ein n-Knoten-Graph mit n ∈ 3N und δ(G) ≥ 2n/3 ist, G_pmit hoher Wahrscheinlichkeit (mhW) einen K_3-Faktor enthält. Sowohl die Bedingung des minimalen Grades als auch die Wahrscheinlichkeitsbedingung sind bestmöglich. Unser Ergebnis ist eine Verstärkung des klassischen extremalen Satzes von Corrádi und Hajnal, entsprechend p = 1 in unserem Ergebnis, und des berühmten probabilistischen Satzes von Johansson, Kahn und Vu, der den Schwellenwert für das Auftreten eines K_3-Faktors (und aller K_r -Faktoren) in G (n, p) festlegt, entsprechend G = K_n in unserem Ergebnis. Es impliziert auch eine erste untere Schranke für die Anzahl der K_3-Faktoren in Graphen mit einem minimalen Grad von mindestens 2n/3, die der Wahrheit nahe kommt. Schließlich betrachten wir die Situation von zufällig gestörten Graphen; ein Modell, bei dem man mit einem dichten Graphen beginnt und dann zufällige Kanten hinzufügt. Wir bestimmen, bei gegebenem 0 < α < 1 − 1/r, wie viele zufällige Kanten man zu einem n-Knoten-Graphen G mit δ(G) ≥ α n hinzufügen muss, um sicherzustellen, dass der resultierende Graph mhW einen K_r -Faktor enthält. Wir zeigen, dass, wenn man α erhöht, die Anzahl der benötigten Zufallskanten in regelmäßigen Abständen “springt", und innerhalb dieser Abstände unser Ergebnis bestmöglich ist. Diese Arbeit schließt somit die Lücke zwischen der oben erwähnten bahnbrechenden Arbeit von Johansson, Kahn und Vu, die den rein zufälligen Fall, d.h. α = 0, löst, und der Arbeit von Hajnal und Szemerédi (und Corrádi und Hajnal für r = 3), die zeigt, dass der ursprüngliche Graph bereits den gewünschten K_r -Faktor enthält, wenn α ≥ 1 − 1/r ist

    Additive structures and randomness in combinatorics

    Get PDF
    Arithmetic Combinatorics, Combinatorial Number Theory, Structural Additive Theory and Additive Number Theory are just some of the terms used to describe the vast field that sits at the intersection of Number Theory and Combinatorics and which will be the focus of this thesis. Its contents are divided into two main parts, each containing several thematically related results. The first part deals with the question under what circumstances solutions to arbitrary linear systems of equations usually occur in combinatorial structures..The properties we will be interested in studying in this part relate to the solutions to linear systems of equations. A first question one might ask concerns the point at which sets of a given size will typically contain a solution. We will establish a threshold and also study the distribution of the number of solutions at that threshold, showing that it converges to a Poisson distribution in certain cases. Next, Van der Waerden’s Theorem, stating that every finite coloring of the integers contains monochromatic arithmetic progression of arbitrary length, is by some considered to be the first result in Ramsey Theory. Rado generalized van der Waerden’s result by characterizing those linear systems whose solutions satisfy a similar property and Szemerédi strengthened it to a statement concerning density rather than colorings. We will turn our attention towards versions of Rado’s and Szemerédi’s Theorem in random sets, extending previous work of Friedgut, Rödl, Rucin´ski and Schacht in the case of the former and of Conlon, Gowers and Schacht for the latter to include a larger variety of systems and solutions. Lastly, Chvátal and Erdo¿s suggested studying Maker-Breaker games. These games have deep connections to the theory of random structures and we will build on work of Bednarska and Luczak to establish the threshold for how much a large variety of games need to be biased in favor of the second player. These include games in which the first player wants to occupy a solution to some given linear system, generalizing the van der Waerden games introduced by Beck. The second part deals with the extremal behavior of sets with interesting additive properties. In particular, we will be interested in bounds or structural descriptions for sets exhibiting some restrictions with regards to either their representation function or their sumset. First, we will consider Sidon sets, that is sets of integers with pairwise unique differences. We will study a generalization of Sidon sets proposed very recently by Kohayakawa, Lee, Moreira and Rödl, where the pairwise differences are not just distinct, but in fact far apart by a certain measure. We will obtain strong lower bounds for such infinite sets using an approach of Cilleruelo. As a consequence of these bounds, we will also obtain the best current lower bound for Sidon sets in randomly generated infinite sets of integers of high density. Next, one of the central results at the intersection of Combinatorics and Number Theory is the Freiman–Ruzsa Theorem stating that any finite set of integers of given doubling can be efficiently covered by a generalized arithmetic progression. In the case of particularly small doubling, more precise structural descriptions exist. We will first study results going beyond Freiman’s well-known 3k–4 Theorem in the integers. We will then see an application of these results to sets of small doubling in finite cyclic groups. Lastly, we will turn our attention towards sets with near-constant representation functions. Erdo¿s and Fuchs established that representation functions of arbitrary sets of integers cannot be too close to being constant. We will first extend the result of Erdo¿s and Fuchs to ordered representation functions. We will then address a related question of Sárközy and Sós regarding weighted representation function.La combinatòria aritmètica, la teoria combinatòria dels nombres, la teoria additiva estructural i la teoria additiva de nombres són alguns dels termes que es fan servir per descriure una branca extensa i activa que es troba en la intersecció de la teoria de nombres i de la combinatòria, i que serà el motiu d'aquesta tesi doctoral. La primera part tracta la qüestió de sota quines circumstàncies es solen produir solucions a sistemes lineals d’equacions arbitràries en estructures additives. Una primera pregunta que s'estudia es refereix al punt en que conjunts d’una mida determinada contindran normalment una solució. Establirem un llindar i estudiarem també la distribució del nombre de solucions en aquest llindar, tot demostrant que en certs casos aquesta distribució convergeix a una distribució de Poisson. El següent tema de la tesis es relaciona amb el teorema de Van der Waerden, que afirma que cada coloració finita dels nombres enters conté una progressió aritmètica monocromàtica de longitud arbitrària. Aquest es considera el primer resultat en la teoria de Ramsey. Rado va generalitzar el resultat de van der Waerden tot caracteritzant en aquells sistemes lineals les solucions de les quals satisfan una propietat similar i Szemerédi la va reforçar amb una versió de densitat del resultat. Centrarem la nostra atenció cap a versions del teorema de Rado i Szemerédi en conjunts aleatoris, ampliant els treballs anteriors de Friedgut, Rödl, Rucinski i Schacht i de Conlon, Gowers i Schacht. Per últim, Chvátal i Erdos van suggerir estudiar estudiar jocs posicionals del tipus Maker-Breaker. Aquests jocs tenen una connexió profunda amb la teoria de les estructures aleatòries i ens basarem en el treball de Bednarska i Luczak per establir el llindar de la quantitat que necessitem per analitzar una gran varietat de jocs en favor del segon jugador. S'inclouen jocs en què el primer jugador vol ocupar una solució d'un sistema lineal d'equacions donat, generalitzant els jocs de van der Waerden introduïts per Beck. La segona part de la tesis tracta sobre el comportament extrem dels conjunts amb propietats additives interessants. Primer, considerarem els conjunts de Sidon, és a dir, conjunts d’enters amb diferències úniques quan es consideren parelles d'elements. Estudiarem una generalització dels conjunts de Sidons proposats recentment per Kohayakawa, Lee, Moreira i Rödl, en que les diferències entre parelles no són només diferents, sinó que, en realitat, estan allunyades una certa proporció en relació a l'element més gran. Obtindrem límits més baixos per a conjunts infinits que els obtinguts pels anteriors autors tot usant una construcció de conjunts de Sidon infinits deguda a Cilleruelo. Com a conseqüència d'aquests límits, obtindrem també el millor límit inferior actual per als conjunts de Sidon en conjunts infinits generats aleatòriament de nombres enters d'alta densitat. A continuació, un dels resultats centrals a la intersecció de la combinatòria i la teoria dels nombres és el teorema de Freiman-Ruzsa, que afirma que el conjunt suma d'un conjunt finit d’enters donats pot ser cobert de manera eficient per una progressió aritmètica generalitzada. En el cas de que el conjunt suma sigui de mida petita, existeixen descripcions estructurals més precises. Primer estudiarem els resultats que van més enllà del conegut teorema de Freiman 3k-4 en els enters. Llavors veurem una aplicació d’aquests resultats a conjunts de dobles petits en grups cíclics finits. Finalment, dirigirem l’atenció cap a conjunts amb funcions de representació gairebé constants. Erdos i Fuchs van establir que les funcions de representació de conjunts arbitraris d’enters no poden estar massa a prop de ser constants. Primer estendrem el resultat d’Erdos i Fuchs a funcions de representació ordenades. A continuació, abordarem una pregunta relacionada de Sárközy i Sós sobre funció de representació ponderada

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Embedding problems in graphs and hypergraphs

    Get PDF
    In this thesis, we explore several mathematical questions about substructures in graphs and hypergraphs, focusing on algorithmic methods and notions of regularity for graphs and hypergraphs. We investigate conditions for a graph to contain powers of paths and cycles of arbitrary specified linear lengths. Using the well-established graph regularity method, we determine precise minimum degree thresholds for sufficiently large graphs and show that the extremal behaviour is governed by a family of explicitly given extremal graphs. This extends an analogous result of Allen, Böttcher and Hladký for squares of paths and cycles of arbitrary specified linear lengths and confirms a conjecture of theirs. Given positive integers k and j with j < k, we study the length of the longest j-tight path in the binomial random k-uniform hypergraph Hk(n, p). We show that this length undergoes a phase transition from logarithmic to linear and determine the critical threshold for this phase transition. We also prove upper and lower bounds on the length in the subcritical and supercritical ranges. In particular, for the supercritical case we introduce the Pathfinder algorithm, a depth-first search algorithm which discovers j-tight paths in a k-uniform hypergraph. We prove that, in the supercritical case, with high probability this algorithm finds a long j-tight path. Finally, we investigate the embedding of bounded degree hypergraphs into large sparse hypergraphs. The blow-up lemma is a powerful tool for embedding bounded degree spanning subgraphs with wide-ranging applications in extremal graph theory. We prove a sparse hypergraph analogue of the blow-up lemma, showing that large sparse partite complexes with sufficiently regular small subcomplex counts and no atypical vertices behave as if they were complete for the purpose of embedding complexes with bounded degree and bounded partite structure

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore